
Imperial College London

Department of Computing

Lock Inference for Java

Khilan Gudka

December 2012

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London

Abstract

Atomicity is an important property for concurrent software, as it provides a stronger guarantee

against errors caused by unanticipated thread interactions than race-freedom does. However,

concurrency control in general is tricky to get right because current techniques are too low-level

and error-prone. With the introduction of multicore processors, the problems are compounded.

Consequently, a new software abstraction is gaining popularity to take care of concurrency

control and the enforcing of atomicity properties, called atomic sections.

One possible implementation of their semantics is to acquire a global lock upon entry to each

atomic section, ensuring that they execute in mutual exclusion. However, this cripples con-

currency, as non-interfering atomic sections cannot run in parallel. Transactional memory is

another automated technique for providing atomicity, but relies on the ability to rollback con-

flicting atomic sections and thus places restrictions on the use of irreversible operations, such as

I/O and system calls, or serialises all sections that use such features. Therefore, from a language

designer’s point of view, the challenge is to implement atomic sections without compromising

performance or expressivity.

This thesis explores the technique of lock inference, which infers a set of locks for each atomic

section, while attempting to balance the requirements of maximal concurrency, minimal locking

overhead and freedom from deadlock. We focus on lock-inference techniques for tackling large

Java programs that make use of mature libraries. This improves upon existing work, which

either (i) ignores libraries, (ii) requires library implementors to annotate which locks to take, or

(iii) only considers accesses performed up to one-level deep in library call chains. As a result,

each of these prior approaches may result in atomicity violations. This is a problem because

even simple uses of I/O in Java programs can involve large amounts of library code. Our

approach is the first to analyse library methods in full and thus able to soundly handle atomic

sections involving complicated real-world side effects, while still permitting atomic sections to

run concurrently in cases where their lock sets are disjoint.

To validate our claims, we have implemented our techniques in Lockguard, a fully automatic

tool that translates Java bytecode containing atomic sections to an equivalent program that

uses locks instead. We show that our techniques scale well and despite protecting all library

accesses, we obtain performance comparable to the original locking policy of our benchmarks.

i

ii

Dedication

I would like to dedicate this thesis to Bhagwan Swaminarayan and to my guru, His Holiness

Pramukh Swami Maharaj. I would like to thank them from the bottom of my heart for blessing

me with this human body, for constantly inspiring me throughout my life and for giving me

inner strength and intellect, only with which have I been able to pursue this PhD.

Bhagwan Swaminarayan His Holiness

Pramukh Swami Maharaj

Brief biography of Bhagwan Swaminarayan

Bhagwan Swaminarayan was born on 3rd April 1781, in the village of Chhapaiya, near Ayodhya,

North India. Having mastered the scriptures by the age of seven, he renounced home at 11 to

embark upon a seven-year spiritual pilgrimage on foot across the length and breadth of India.

Eventually settling in Gujarat, he spent the next 30 years spearheading a spiritual revolution.

He established the Swaminarayan Sampradaya to reinforce the Vedic philosophy of Akshar-

Purushottam. This philosophy essentially means: to devote oneself to God by becoming like his

choicest disciple. He introduced religious and humanitarian reforms, serving the poor and the

needy, challenging superstition, addictions and blind faith. His work concentrated on promoting

personal morality, moulding spiritual character and most importantly, showing countless souls

the means to attain ultimate redemption from the cycle of birth and death. In his own lifetime,

he was worshipped as the supreme God by hundreds of thousands of devotees.

He promised to remain ever present on earth through a succession of spiritual gurus:

Aksharbrahman Gunatitanand Swami, Bhagatji Maharaj, Shastriji Maharaj, Yogiji Maharaj

and presently His Holiness Pramukh Swami Maharaj.

iii

Brief biography of His Holiness Pramukh Swami Maharaj

His Holiness Pramukh Swami Maharaj is the present spiritual leader of Bochasanwasi Shri

Akshar Purushottam Swaminarayan Sanstha (BAPS). He leads an austere life of lifetime

celibacy, without personal wealth or comfort. Representing the essence of Hinduism, his

compassion for humanity, universal wisdom and striking simplicity, have touched many

individuals, including religious, national and international leaders. However, most important is

his quiet, undisturbed love for God, which rises beyond all borders of nation, race and religion.

This resonates in his lifelong motto of ‘In the joy of others, lies our own.’

Alongside spiritual activities, BAPS also has a charitable trust called BAPS Charities. Their

noble activities include sponsored walks and bike-ride challenges, blood-donation drives,

hospitals and mobile medical services, anti-addiction camps, welfare services for tribal

communities, educational institutions and disaster-relief work like earthquakes, tsunamis,

hurricanes and floods. Please visit http://www.baps.org for more information.

iv

http://www.baps.org

Acknowledgements

I would like to express my sincere gratitude to:

• My supervisor Professor Susan Eisenbach, for being such a great advisor and friend over

the last few years. Her trust in my ability and patience have enabled me to gradually

develop into a confident researcher. I would not have been able to reach such a successful

conclusion to my thesis without her support and guidance.

• My second supervisor Professor Sophia Drossopoulou, for our discussions and her enthu-

siasm in all aspects of my work.

• Microsoft Research Cambridge, for funding my PhD as part of their PhD Scholarship

Programme. In particular, I would like to thank my sponsor Tim Harris, for being a

great mentor. I have enjoyed the many chats we have had about the work.

• David Cunningham, who first introduced me to atomic sections and lock inference. He

also had the original idea of representing object accesses as lvalue expressions. I feel

fortunate to have been able to work with him during my Masters thesis and first year

of my PhD. His helpful nature, ability to think very quickly and motto of “functionality

first” inspired me in many ways.

• The SLURP research group, for the immensely useful feedback for various aspects of my

work and the interesting discussions over the years. In particular, I would like to thank

my office mate Tristan, for the many whiteboard sessions and suggestions about how to

develop my ideas.

• Members of the Soot, Jikes RVM, concurrency-interest and trans-memory mailing lists

for their advice on technical matters. Their help has saved me a lot of time and hair

pulling.

• My PhD examiners for making my viva experience a very positive and enjoyable one.

I would also like to thank them for their thorough review of my thesis and resulting

suggested improvements, which have boosted its quality tremendously.

v

• Pujya Tyagprakash Swami, a sadhu from the BAPS Shri Swaminarayan Mandir in Neas-

den, London, for his guidance, support and encouragement throughout. I first met him

in the summer of 2007 in Los Angeles, just before commencing my PhD. During this first

meeting, he advised me at great length about the attitude and organisation that I would

need to keep, having completed a PhD himself. He is one of the most intelligent people

I have had the fortune to meet, and I feel blessed to have been able to benefit from his

vast knowledge and experience.

• My parents, for nurturing me into the person that I am today. They have constantly

encouraged and supported me, both emotionally and financially, to achieve higher and

reach my true potential. There is no way that I can repay them.

• Finally, my dear wife Meha, for always being there for me and constantly showering her

love and support. Thank you for patiently tolerating the many months that I spent

writing this thesis. You are my best friend and life partner. I pray that may our love for

each other only grow stronger with every passing moment.

vi

Statement of Originality

The implementation of lockguard and the algorithms described in this thesis are my own

work.

The original idea of representing object accesses as lvalue expressions originates from David

Cunningham. David Cunningham, Professor Susan Eisenbach and I co-authored a paper,

entitled “Keep Off The Grass: Locking the Right Path for Atomicity” [CGE08] describing this

approach and the idea of representing lvalue expressions as nondeterministic finite automata.

This work is part of David’s PhD, but we jointly came up with the idea during my Master’s

thesis and the second year of his PhD. Using type locks for protecting unbounded accesses and

multi-granularity locking to simultaneously support instance and type locking were also David’s

ideas.

Professor Susan Eisenbach, Tim Harris and I co-authored a paper, entitled “Lock Inference

in the Presence of Large Libraries” [GHE12]. This formed the technical basis of Chapter 3,

Chapter 4 and Chapter 5. The technical contributions of the paper are my own.

Professor Susan Eisenbach and I co-authored a paper, entitled “Fast Multi-Level Locks for

Java” [GE10]. The technical contributions of this paper are also my own and form the basis

of Section 5.2. The multi-granularity locking protocol is borrowed from Gray et al. [GLP75].

Professor Sophia Drossopoulou provided detailed feedback about this paper.

In Chapter 4, the control flow graph summarisation technique is borrowed from Rountev et

al. [RSX08]. Their paper also gave us the inspiration to use the IDE analysis framework for

our object-access inference analysis. All remaining analyses and techniques are my own work.

Professor Eisenbach has also proof read and contributed detailed suggestions throughout this

thesis. Any mistakes remaining are my own.

vii

viii

‘In the joy of others, lies our own.’
His Holiness Pramukh Swami Maharaj

ix

x

Contents

Abstract i

Dedication iii

Acknowledgements v

Statement of Originality vii

1 Introduction 1

1.1 Motivation . 1

1.2 Subtleties of concurrent programming . 2

1.2.1 Preventing race-conditions . 3

1.2.2 Race-freedom as a non-interference property 4

1.2.3 Enter the world of atomicity . 6

1.2.4 The��
�H
HHjoys complexities of locks . 6

1.2.5 What about lock-free programming? . 10

1.2.6 Intractability of programmer-enforced atomicity 10

1.3 The quest for better abstractions . 11

xi

xii CONTENTS

1.4 Atomic sections . 12

1.4.1 Implementing atomic sections . 13

1.5 Lock inference . 14

1.6 Lock inference for Java . 14

1.7 Contributions . 17

1.8 Publications . 18

2 Background 21

2.1 Atomic sections . 21

2.1.1 Semantics of atomic sections . 22

2.1.2 Serialisability and two-phase locking . 23

2.1.3 Atomic section nesting: flat, closed or open nesting 25

2.2 Transactional memory . 26

2.2.1 Hardware transactional memory (HTM) 28

2.2.2 Software transactional memory (STM) 29

2.3 Lock inference . 43

2.4 Program analysis . 46

2.4.1 Data flow analysis . 46

2.4.2 Intraprocedural versus interprocedural 50

2.5 Review of the lock-inference literature . 55

2.5.1 Basics of lock inference . 57

2.5.2 Inferring shared accesses . 58

CONTENTS xiii

2.5.3 Inferring locks . 65

2.5.4 Acquiring/releasing locks . 68

2.5.5 Additional features . 71

2.6 Soot . 73

2.7 Conclusion . 73

3 Scalable lock inference 75

3.1 General approach . 76

3.1.1 Java features not handled by our analysis 77

3.1.2 Call-graph construction . 78

3.2 Inferring object accesses . 79

3.2.1 From sets to environments . 82

3.2.2 Environment transformers . 82

3.2.3 Graph representation of transformers . 86

3.2.4 Transformer composition . 87

3.2.5 Sparsity . 89

3.2.6 Computing method summaries . 91

3.2.7 Interprocedural propagation . 92

3.2.8 A note on lattice ordering and monotonicity 93

3.3 Inferring locks . 95

3.4 Avoiding deadlock . 96

3.5 Evaluation . 99

xiv CONTENTS

3.5.1 “Hello World” . 100

3.5.2 GNU Classpath . 101

3.5.3 Benchmarks . 102

3.6 Conclusion . 104

4 Analysis optimisations 107

4.1 Summarising CFGs . 108

4.2 Delta transformers . 110

4.3 Parallel propagation . 117

4.4 Efficient data structures . 118

4.5 Worklist ordering . 120

4.6 Evaluation . 124

4.6.1 Optimisation comparison . 124

4.6.2 Scalability . 125

4.7 Conclusion . 127

5 Minimising locking overhead 129

5.1 Reducing the number of locks acquired . 130

5.1.1 Lock elision for single-threaded execution 130

5.1.2 Thread-local objects . 131

5.1.3 Instance-local objects . 131

5.1.4 Class-local objects . 144

CONTENTS xv

5.1.5 Method-local objects . 149

5.1.6 Dominators . 151

5.1.7 Read-only locks . 156

5.1.8 Unnecessary intentional locking . 158

5.1.9 Lock elision for single-atomic execution 158

5.2 Lock implementation . 159

5.2.1 Multi-granularity locking protocol . 159

5.2.2 The Synchronizer framework . 161

5.3 Deadlock . 162

5.4 Evaluation . 163

5.5 Conclusion . 165

6 Conclusion 167

6.1 Summary of thesis achievements . 167

6.1.1 Recap of motivation . 167

6.1.2 Achievements . 168

6.2 Future work . 170

6.2.1 Cold code paths . 170

6.2.2 Eliminate type locks . 172

6.2.3 Parallelism within atomic sections . 174

6.2.4 Hybrid with transactional memory . 174

6.3 Closing remarks . 174

Bibliography 177

A Output of Halpert et al. on concurrent “Hello World” program 193

xvi

List of Figures

1.1 An example of a race condition that occurs when two threads simultaneously

increment a Counter instance without synchronisation. 3

1.2 A race-free version of the counter example given in Figure 1.1. 4

1.3 An example illustrating that asserting race-freedom is not enough to ensure

absence from all errors caused by thread interactions. 5

1.4 An example of deadlock. 8

1.5 An implementation of the Counter class using atomic sections. 12

1.6 A call graph for the “Hello World” atomic section, containing 1150 methods. . . 16

2.1 A diagrammatic description of the two-phase locking protocol. 24

2.2 A non-blocking implementation of the Counter class of Figure 1.2. 32

2.3 An example of opening an object before accessing it in object-based STMs [HLMSI03]. 36

2.4 Data structures in Harris and Fraser’s word-based STM [HF03]. 38

2.5 A lock-inference example that uses reader/writer locks. 45

2.6 An example program to illustrate the concept of a control flow graph. 47

2.7 A simple program to demonstrate the difference between may and must analyses. 48

xvii

xviii LIST OF FIGURES

2.8 A simple iterative pseudocode algorithm for computing the entry and exit sets

of a forwards, may analysis. 49

2.9 A pseudocode worklist algorithm for computing the entry and exit sets of a

forwards, may analysis. 50

2.10 A diagrammatic description of interprocedural analysis. 51

2.11 An example illustrating the problem of valid paths. 52

2.12 An example of Sagiv et al.’s [SRH96] pointwise representation. 55

2.13 A comparison of prior lock-inference approaches. 56

2.14 An example illustrating the general idea behind lock inference. 57

2.15 An example code fragment for iterating through a dynamic data structure, show-

ing that it is not always possible to know statically how many objects will be

accessed at run-time. 58

2.16 Example code fragments highlighting the difficulties presented by assignments

and aliasing for lock inference. 60

2.17 A heap-centric view of iterating through a linked list. 62

2.18 Concurrent “Hello World” example to demonstrate how Halpert et al.’s [HPV07]

treatment of the library can lead to unsoundness. 65

2.19 A hash table example from Autolocker [MZGB06], demonstrating their pro-

tected by annotation for associating locks with shared data. 66

2.20 An example multi-granularity locking hierarchy. 69

2.21 An example demonstrating why locks need to be acquired in prefix order. 70

2.22 An implementation of a condition variable using Cunningham et al.’s preempt

construct [CGE08]. 72

LIST OF FIGURES xix

2.23 An example of Soot’s Jimple intermediate representation. 73

3.1 An overview of our lock-inference analysis. 76

3.2 A simple printer example showing how our analysis would transform an atomic

section. 78

3.3 The printer example of Figure 3.2 extended so that printers have queues. 80

3.4 The inferred nondeterministic finite automaton from the atomic calcAvgWait-

Time method in Figure 3.3. 80

3.5 A portion of the automaton from Figure 3.4 and its environment representation. 82

3.6 Our environment transformers for object-access inference. 83

3.7 Pointwise representations for the key transformers in Figure 3.6. 87

3.8 The printer example from Figure 3.3 extended with an enqueue method. 88

3.9 An example showing how transformer composition works. 88

3.10 Our refined sparse pointwise representation that allows efficient checking for

trivial edges. 89

3.11 Our refined sparse pointwise representations for the transformers in Figure 3.7. . 90

3.12 An example illustrating what the correct behaviour of the join operation should

be when implicit edges are present. 91

3.13 An example call graph containing a set of mutually recursive methods. 94

3.14 An example showing how we convert an inferred nondeterministic finite automa-

ton to locks. 95

3.15 Our deadlock-free lock acquisition algorithm for the locks inferred in Figure 3.14. 97

3.16 Our extension to the waitsFor method from Figure 3.15 that reduces the chance

of livelock occurring by using an exponential backoff. 99

xx LIST OF FIGURES

3.17 A table showing analysis results for the “Hello World” program first introduced

in Section 1.6. 100

3.18 A table showing analysis results for GNU Classpath 0.97.2p10. 102

3.19 A table showing an analysis and run-time results comparison for a selection of

benchmarks from Halpert et al. [HPV07, Hal08]. 103

3.20 A table showing the number of locks inferred by our analysis alongside those

inferred by Halpert et al., for our set of benchmarks. 104

4.1 The Printer class of Figure 3.3 extended with method incElapsed that incre-

ments the elapsed time of each pending job. 109

4.2 The original and summarised control flow graphs for the incElapsedAux method

from Figure 4.1. 110

4.3 A table summarising how delta transformers are used to update data flow value

approximations. 116

4.4 The control flow graphs for two arbitrary methods, illustrating that the intrapro-

cedural propagation of distinct methods can be parallelised. 118

4.5 Our efficient 64-bit encoding of transformer edges. 120

4.6 Java code of our algorithm for transformer edge composition using bit-wise op-

erations, for the efficient 64-bit encoding of Figure 4.5. 121

4.7 An example illustrating the benefits of worklist ordering. 122

4.8 A graph and table showing the effects of each individual analysis optimisation

on analysis time and memory usage respectively. 123

4.9 A table showing our analysis running times and memory usage with all analysis

optimisations enabled, for the benchmarks from Section 3.5. 126

LIST OF FIGURES xxi

4.10 A table showing locks inferred by our analysis alongside those inferred by Halpert

et al., for the hsqldb benchmark. 126

5.1 Example LinkedList and Node class definitions with an add method. 132

5.2 A possible run-time heap organisation for an instance of class LinkedList of

Figure 5.1 and associated objects. 132

5.3 The add method from Figure 5.1 instrumented with our inferred locks. 133

5.4 Our transfer functions for instance-local object inference. 135

5.5 A code example illustrating how inner classes access enclosing instance fields. . . 139

5.6 An example of instance handover. 140

5.7 Pseudocode for the simple version of our handover detection algorithm. 141

5.8 Two example programs showcasing that loops can lead to incorrectly identifying

a handover. 142

5.9 Pseudocode for our extended handover detection algorithm that detects the sub-

tle case of when a prospective handover-object is passed to multiple callees and

so is actually not a handover. 142

5.10 A code fragment from the traffic benchmark, demonstrating a benign case of

using an object that would not violate instance handover. 143

5.11 A code fragment showing that local-to-local assignments are also benign for

handover detection. 144

5.12 Pseudocode for the final version of our handover detection algorithm. 145

5.13 An example code fragment from the traffic benchmark, illustrating class-local

objects. 146

5.14 Our transfer functions for class-local object inference. 148

5.15 A code example showing the need for finding method-local objects. 149

5.16 Our transfer functions for method-local object inference. 150

5.17 An example demonstrating the concept of dominator locks. 151

5.18 Pseudocode of our algorithm for finding dominators. 153

5.19 Extension to our basic dominators algorithm of Figure 5.18 that upgrades read

locks when they dominate write locks. 155

5.20 Pseudocode of our algorithm for finding read-only instance and type locks. . . . 157

5.21 A variation on the famous bank account example, illustrating the advantages of

multi-granularity locks. 159

5.22 A diagram and table showing the lock-mode lattice and compatibility matrix

respectively, for the multi-granularity locking discipline of Gray et al. [GLP75]. . 160

5.23 A pseudocode example showing how we first poll a lock a few times before rolling

back the locking phase. 162

5.24 Two tables showing locks inferred for the benchmarks in Figure 3.19 by Halpert

et al., and our approach for both with and without lock optimisations enabled. . 164

5.25 A table showing analysis time breakdown for each lock optimisation. 164

5.26 A table comparing execution times for each benchmark, when executed with its

original locking policy, a single global lock, locks inferred by Halpert et al. and

our inferred locks for both with and without lock optimisations enabled. 164

6.1 An example illustrating the concept of cold code paths and how they can be

utilised to optimise the locking policy. 171

6.2 An example highlighting deadlock-prone locking policies that may result when

deferring locks for accesses along cold code paths and a possible solution. 173

xxii

Chapter 1

Introduction

1.1 Motivation

Processor manufacturers can no longer continue to increase clock speeds at the same rate they

have done previously, due to the demands it places on power [Myc07]. Hence, they are now

using increases in transistor density, as predicted by Moore’s law, to put multiple processing

cores on a chip. Furthermore, this trend is likely to continue for the foreseeable future. Intel

predicts that future processors will contain hundreds or even thousands of cores on a single

chip [GC09].

In order to harness such parallel computing power as well as continue to get free increases

in software performance from increases in hardware performance, software programs need to

be concurrent [Sut05, Szy05]. That is, structured as a set of logical activities that execute

simultaneously. For example, a concurrent web server consists of a number of workers enabling

it to accept and process multiple client requests at the same time.

At present, the vast majority of programs are sequential [Sut05], performing only one logical

activity at any one time. One reason for this might be the lack of true parallelism, however,

a fundamentally more serious problem is that concurrent programming with current

techniques is inherently difficult and error-prone [Ous96]. In the following sections, we

1

2 Chapter 1. Introduction

look at why this is the case.

1.2 Subtleties of concurrent programming

Concurrent programs consist of multiple threads of execution that reside within an operating

system process. Each thread has its own stack and CPU state, enabling them to be inde-

pendently scheduled. Moreover, to keep them lightweight, they share their owning process’s

resources, including its address space. However, this common memory is the root cause of all

problems associated with concurrent programming. In particular, if care is not taken to ensure

that such shared access is controlled, it can lead to interference, more commonly referred to as

a race condition [Ous96]. This occurs when two or more threads concurrently access the same

memory location and at least one of the accesses is a write.

Figure 1.1 shows an example race condition whereby two threads T1 and T2 proceed to increment

a Counter object c concurrently by invoking its increment method. This method reads the

value of the counter into a register, adds 1 to it and then writes the updated value back to

memory. Figure 1.1(c) shows an example interleaving: Thread T1 reads the current value of the

counter (0) into a register but is then pre-empted by the scheduler which then runs thread T2.

T2 reads the same value (0) into a register, increments it and writes the new value (1) back to

memory. T1 still thinks that the counter is 0 and hence when it is eventually run again, it will

also write the value 1, overwriting the update made by T2. This error is caused because both

threads are allowed uncontrolled access to shared memory, i.e. there is no synchronisation. As

a result, a race condition occurs and in this case, an update is lost.

Such bugs can be extremely difficult to detect and debug because they depend on the way the

operations of different threads are interleaved, which is nondeterministic and can potentially

have an infinite number of possible variations. As a result, these bugs can remain unexposed

during testing, only to appear after the product has been rolled out into production where they

can potentially lead to disastrous consequences [LT93, Jon97, Pou04].

1.2. Subtleties of concurrent programming 3

class Counter {
int counter = 0 ;

void increment () {
counter = counter + 1 ;

}
}

Counter c = new Counter () ;
Thread T1 : c . increment () ;
Thread T2 : c . increment () ;

increment() execution steps:

read counter into register;
add 1 to register;
write register to counter;

(a) (b)

Thread T1 Thread T2

1 counter is 0
2 read counter into register

3 counter is 0
4 read counter into register
5 add 1 to register
6 write register to counter

7 counter is 1
8 add 1 to register
9 write register to counter

10 counter is 1

(c)

Figure 1.1: An example race condition that occurs when two threads T1 and T2 proceed to
increment a counter at the same time without synchronisation.

1.2.1 Preventing race-conditions

At present, programmers prevent such race conditions by ensuring that conflicting accesses to

shared data are mutually exclusive, typically enforced using locks. Each thread must acquire

the lock associated with an object before accessing it. If the lock is currently being held by

another thread, it is not allowed to continue until that thread releases it. In this way, threads

are prevented from performing conflicting operations at the same time and thus interfering with

each other.

4 Chapter 1. Introduction

class Counter {
int counter = 0 ;

synchronized void increment () {
counter = counter + 1 ;

}
}

Counter c = new Counter () ;
Thread T1 : c . increment () ;
Thread T2 : c . increment () ;

Figure 1.2: Race-free version of the counter example given in Figure 1.1.

Figure 1.2 shows a race-free version of our counter example. The synchronized keyword is

Java syntax that requires the invoking thread to first acquire an exclusive lock on the Counter

object before proceeding. If the lock is currently unavailable, the requesting thread is blocked

and placed into a queue. When the lock is released, it is passed to a waiting thread which is

then allowed to proceed. Going back to our example, now thread T2 will not be allowed to

execute increment until T1 has finished because only then can it acquire the lock on c. Thus,

invocations of increment are now serialised and races are prevented.

1.2.2 Race-freedom as a non-interference property

Ensuring that concurrent software does not exhibit erroneous behaviour due to thread interac-

tions has traditionally been interpreted as meaning that programs must be race-free. However,

race-freedom is not sufficient to ensure the absence of such errors. To illustrate this, we extend

our Counter class to include a method reset, which resets the value of the counter to that

provided as an argument to it. Moreover, it is declared synchronized to prevent races.

Figure 1.3(a) shows the updated Counter class as well as an example scenario involving two

counters (c1 and c2) and two threads (T1 and T2): Thread T1 wishes to reset both counters

with the value 1, while T2 proceeds to reset them with value 2. It is worth noting here that the

intention is that both counters are reset together, regardless of the order in which the threads

are run. That is, whether T1’s double reset persists or T2’s is a matter of timing. However, we

1.2. Subtleties of concurrent programming 5

class Counter {
// . . . as above . . .
synchronized void r e s e t (int va l) {

counter = va l ;
}

}
Counter c1 = new Counter () ;
Counter c2 = new Counter () ;

Thread T1 :
c1 . r e s e t (1) ;
c2 . r e s e t (1) ;

Thread T2 :
c1 . r e s e t (2) ;
c2 . r e s e t (2) ;

Thread T1 Thread T2

1 c1.reset(1)

2 c1.reset(2)

3 c2.reset(2)

4 c2.reset(1)

c1.counter c2.counter

2 1

(a) (b)

Figure 1.3: An example illustrating that asserting race-freedom is not enough to ensure absence
from all errors caused by thread interactions.

want the resets to be performed in a pair. Figure 1.3(b) gives an example interleaving of their

calls to reset. T1 begins by resetting counter c1 to 1 but is pre-empted before it can update

c2. Thread T2 is then run to completion. At this point, both counters have the value 2, which

is a valid outcome of our execution. However, T1 resumes and resets c2 to 1. The final result

is that c1.counter is 2 and c2.counter is 1. This does not represent T1’s intention nor T2’s.

Such incorrect behaviour occurs because thread T2 is able to modify counter c2 while T1 is

performing its double reset. This is possible because although T1’s invocations of c1.reset(1)

and c2.reset(1) individually ensure mutually exclusive access to c1 and c2 respectively, their

composition does not. As a result, T2’s operations can be interleaved between them leading to

the higher-level interference. Note that there are no races, as reset is declared synchronized.

The former case whereby shared accesses are not protected is also referred to as low-level data

races whereas the latter case of a related sequence of protected shared accesses not being atomic

is also known as a high-level data race [AHB03]. When referring to race-freedom in this thesis,

we refer to the low-level notion.

6 Chapter 1. Introduction

1.2.3 Enter the world of atomicity

To assert that such high-level interferences do not occur, we need a stronger property that

ensures that threads cannot interleave conflicting operations while a block of code is executing,

that is the atomicity of code blocks. A code block is said to be atomic if the result of any

concurrent execution involving it is equivalent to the execution where no operations from other

threads are interleaved. This means that in our example of Figure 1.3, the result of T1 and T2

executing concurrently would be the same as if T1 and T2 executed one after the other, leaving

both counters either with value 1 or 2. Atomicity is a very powerful concept, as it enables us

to reason about a program’s behaviour at a simpler level. It abstracts away the interleavings

of different threads (even though in reality, interleaving will still occur) enabling us to think

about a program’s threads sequentially.

A number of techniques exist to verify the atomicity of code blocks, such as: type checking

[FQ03b, FQ03a], type inference [FFL05], model checking [HRD04], theorem proving [FQ04]

and run-time analysis [FF04, WS06]. However, enforcing the atomicity of a code block is still

left to the programmer, usually using locks.

1.2.4 The ��
�HHHjoys complexities of locks

A lock is a data structure that can be in one of two states: acquired and free. It also has

two operations lock() and unlock(), allowing it to be acquired and released respectively. A

thread acquires the lock associated with a shared object before accessing it. If the lock is held

by another thread, it must wait until that thread releases it. In this way, threads are prevented

from performing conflicting operations and interfering with each other.

The main problem with using locks is that they are imperative—the programmer is responsi-

ble for enforcing atomicity using them. In object-oriented languages, each object is typically

protected by its own lock. However, in general, the relationship between locks and objects

is flexible. The number of objects protected by a lock is known as the locking granularity.

This presents a trade-off between simplicity and parallelism. A coarse granularity requires few

1.2. Subtleties of concurrent programming 7

locks, but permits less concurrency because threads are more likely to contend for the same

lock. Conversely, fine-grained locks protect fewer objects resulting in a larger number of locks

but allow more accesses to proceed in parallel. Some examples of locking granularities include:

• Single global mutual-exclusion lock (that is, a global lock that can be held by only one

thread at a time) to protect all shared accesses of all objects.

• A mutual-exclusion lock per object (e.g. synchronized in Java) that subsequently pre-

vents multiple threads from accessing the same object at the same time but which permits

concurrent accesses to different objects.

• A multiple-reader/single-writer lock for each object that allows non-conflicting accesses

on the same object to proceed in parallel. This makes it possible for several threads to

read the value of the counter concurrently but only one thread is allowed access when

updating it.

Each of the above present trade-offs in terms of performance and complexity that the program-

mer has to choose from. Programmers aim to get the best performance out of their software.

However, the complexity of concurrency control can increase dramatically with the number of

locks:

• Forgetting to acquire a lock reinvites the problem of interference (safety violation).

• Acquiring locks in the wrong order can lead to deadlock (progress violation).

Figure 1.4(a) extends our counter example with an equals method that compares two Counter

objects for the same value. Before this method accesses the second counter, it must first acquire

a lock on it to ensure interference does not occur. Thus, it must acquire both a lock on the

counter whose equals method has been invoked and the counter we are comparing with it.

However, if another thread tries to acquire these locks in the opposite order (as shown in

Figure 1.4(b)), then deadlock may result.

8 Chapter 1. Introduction

class Counter {
int counter = 0 ;

synchronized void increment () { . . . }

synchronized void r e s e t (int va l) { . . . }

synchronized boolean equa l s (Counter c) {
synchronized (c) {

return counter == c . counter ;
}

}
}

Counter c1 = new Counter () ;
Counter c2 = new Counter () ;

Thread T1 : c1 . equa l s (c2) ;
Thread T2 : c2 . equa l s (c1) ;

Thread T1 Thread T2

1 lock c1

2 lock c2

3 lock c1

4 lock c2 waiting
5 waiting waiting

(a) (b)

Figure 1.4: An example of deadlock. (a) is the Counter class from Figure 1.3 extended with an
equals method to check if the current Counter object has the same value as a second Counter

object. Moreover, threads T1 and T2 execute this method on two separate instances, passing the
other instance as the argument. (b) shows an example locking schedule that leads to deadlock.
Note that like race conditions, the occurrence of deadlock also depends on the order in which
operations are interleaved.

Note how the actual occurrence of deadlock in the example depends on the way operations are

interleaved. This is similar to race conditions, however deadlocks are easier to debug because

the affected threads come to a standstill. Another problem illustrated by the example is that

modularity must be broken in order to detect where deadlock may occur. Therefore, methods

can no longer be treated as black boxes and must be checked to ensure that locks are not

acquired in a conflicting order (although a number of tools exist that can statically check for

deadlocks by building a lock graph and then looking for cycles [Art01]).

The possibility of deadlock can be eliminated by making the locking granularity coarser, so that

a single lock is used for all Counter objects. However, this may result in a negative effect on

performance as non-conflicting operations, such as incrementing different counters, would not

be allowed to proceed in parallel. Hence, hitting the right balance can be difficult. Furthermore,

1.2. Subtleties of concurrent programming 9

consider if the Counter class were part of a library. A static analyser might detect that there

is a possibility of deadlock, but how can it be prevented? You would need to ensure that

c1.equals(c2) and c2.equals(c1) were not called concurrently by synchronising on another

lock. However, this just adds to the complexity!

Other problems that can occur due to locks include:

• Priority inversion: occurs when a high priority thread Thigh is made to wait on a lower

priority thread Tlow. This is of particular concern in real-time systems or systems that

use spin-locks (that busy-wait instead of blocking the thread) because in these, Thigh will

be run in favour of Tlow, and thus the lock will never be released. Solutions include raising

the priority of Tlow to that of Thigh (priority inheritance protocol) or the highest priority

thread in the program (priority ceiling protocol) [Dib08].

• Convoying: can occur in scenarios where multiple threads with similar behaviour are

executing concurrently (e.g. worker threads in a web server). Each thread will be at a

different stage in its work cycle. They will also be operating on shared data and thus

will acquire and release locks as and when appropriate. Suppose one of the threads, T,

currently possesses lock L and is pre-empted. While it is off the CPU, the other threads

will continue to execute and effectively catch up with T up to the point where they need

to acquire lock L to progress. Given that T is currently holding this lock, they will

block. When T releases L, only one of these waiting threads will be allowed to continue

(assuming L is a mutual-exclusion lock), thus the effect of a convoy will be created as

each waiting thread will be resumed one at a time and only after the previous waiting

thread has released L [BGMP79].

• Livelock: similar to deadlock in that no progress occurs, but where threads are not

blocked. This may occur when spin-locks are used.

Thus, concurrent programming with locks introduces a lot of additional complexity in the

software-development process that can be difficult to manage. This is primarily because locks

are too low-level and leave the onus on the programmer to enforce safety and liveness properties.

10 Chapter 1. Introduction

This is not just felt by novice programmers, as even experts can end up making mistakes [HP04].

The worst part is that these problems are hard to detect at compile-time and their impact at

run-time can be disastrous [Jon97, LT93, Pou04].

1.2.5 What about lock-free programming?

Lock-free programming [Fra04] is one alternative that allows multiple threads to update shared

data concurrently in a race-free manner without using locks. Typically, this is achieved using

special atomic update instructions provided by the CPU, such as Compare-and-Swap (CAS)

and Load-Linked/Store-Conditional (LL/SC). These instructions update a location in memory

atomically provided it has a particular value (in CAS this is specified as an argument to the

instruction, while for LL/SC it is the value that was read using LL). A flag is set if the

update was successful, enabling the program to loop until it is. The java.util.concurrent

framework [Lea05], introduced in Java 5, provides high-level access to such atomic instructions,

making lock-free programming more accessible to programmers.

While lock-free algorithms avoid the complexities associated with locks such as deadlock, pri-

ority inversion and convoying, writing such algorithms in the first place can be even more

complicated. In fact, lock-free implementations of even simple data structures like stacks and

queues, are worthy of being published [HSY04, FR04]. Thus, such a methodology does not

seem like a practical solution in the short run.

1.2.6 Intractability of programmer-enforced atomicity

In addition to the problems that arise when trying to enforce atomicity using locks, it actually

may not always be possible to do so. Consider the case where we were invoking a method on

an object that was an instance of some API class. Acquiring a lock on this object may not be

sufficient for atomicity. In particular, if the method accesses other objects via instance fields,

we would need to acquire locks on those too in case they are accessible from other threads.

However, accessing those fields would break encapsulation and might not even be possible if

1.3. The quest for better abstractions 11

they are private. One solution would be for the class to provide a Lock() method that locks

all its fields. However, this breaks abstraction and reduces cohesion because now the class has

to provide operations that are not directly related to its purpose.

In summary, although atomicity allows us to more confidently assert the absence of errors

due to thread interactions, programmers are still responsible for ensuring it. With current

abstractions, this may not even be possible due to language features such as encapsulation.

In fact, even if it is possible, modularity is broken thus increasing the complexity of code

maintenance, while other problems such as deadlock are also increasingly likely.

1.3 The quest for better abstractions

Given that programmers face an inevitable turn towards concurrency and the problems as-

sociated with current abstractions, a lot of research is currently being done to find ways to

make concurrent programming easier and more transparent. Some advocate that we need com-

pletely new programming languages that are better geared for concurrency, but given that we

do not yet know exactly what these languages should look like, they suggest this shift should

be gradual [Sut05].

Many have proposed race-free variants of popular languages that perform type checking or type

inference to detect if a program contains races [Boy04, CDE07, Gro03], while others abstract

concurrency into the compiler enabling programmers to specify declaratively their concurrency

requirements through compiler directives [CJP07]. Alternative models of concurrent computa-

tion have been suggested such as actors [Agh86] and chords [BCF04] as well as a number of

flow languages that enable programmers to specify their software as a pipeline of operations

with parallelism being managed by the run-time [BGK+06].

However, these proposals either require programmers to dramatically change the way they write

code or they impose significant overheads during development, such as the need to provide

annotations. This limits their practicality and usefulness in the short-term.

12 Chapter 1. Introduction

class Counter {
int counter = 0 ;

atomic void increment () {
counter = counter + 1 ;

}

atomic void r e s e t (int va l) {
counter = va l ;

}
}

Thread T1 :
atomic {

c1 . r e s e t (1) ;
c2 . r e s e t (1) ;

}

Thread T2 :
atomic {

c1 . r e s e t (2) ;
c2 . r e s e t (2) ;

}

(a) (b)

Figure 1.5: An implementation of the Counter class using atomic sections.

1.4 Atomic sections

The difficulty of manually enforcing atomicity has led researchers to consider a language-level

abstraction to do the job instead. Atomic sections [Lom77] are blocks of code that appear

to other threads to execute in a single step, with the details of how this is achieved being

taken care of by the compiler and/or run-time. Figure 1.5 shows an implementation of our

double-counter-reset example using atomic sections (denoted using the atomic keyword).

Unlike locks, they are declarative and thus relieve the programmer from the complexities as-

sociated with concurrency control. Atomic sections enable programmers to think in terms of

single-threaded semantics, also removing the need to make classes/libraries thread safe. Fur-

thermore, error handling is considerably simplified because code within an atomic section is

guaranteed to execute without interference from other threads, making error recovery similar

to the sequential case. They are also composable; that is, two or more calls to atomic methods

can be made atomic by wrapping the sequence inside an atomic section. There is no need to

worry about which objects will be accessed and in what order, as protecting them and avoiding

deadlock is taken care of automatically. Therefore, they also promote modularity.

However, what makes them even more appealing is that they do not require the programmer

to change the way he/she codes. In fact, they simplify code making it much more intuitive and

easier to maintain. Furthermore, there is no longer the potential for deadlock to occur as the

1.4. Atomic sections 13

underlying implementation ensures that safety and progress violations do not occur.

1.4.1 Implementing atomic sections

Atomic sections are quite an abstract notion, giving language implementors a lot of freedom in

how they are realised. A number of techniques have been proposed over the years, including:

• Interrupts: proposed in Lomet’s seminal paper [Lom77], whereby interrupts are disabled

while a thread executes inside an atomic section.

• Co-operative scheduling: involves intelligently scheduling threads such that their in-

terleavings ensure atomicity [Sco87].

• Object proxying: a very limited technique whereby proxy objects are used to perform

lock acquisitions before object invocations at run-time [FR02].

• Transactional memory: atomic sections are executed as database-style transactions.

In particular, memory updates are buffered until the end of the atomic section and subse-

quently committed in ‘one step’ if conflicting updates have not been performed by other

threads. Otherwise, the changes are rolled back (i.e. the buffer is discarded) and the

atomic section is reexecuted [HLR10].

• Lock inference: a compile-time approach that statically infers which locks need to be

acquired to ensure atomicity and transparently inserts acquire and release statements

in such a way that deadlock is avoided [HFP06, MZGB06, CCG08, HPV07, CGE08,

EFJM07, ZSZ+08].

• Hybrids: approaches that combine several of the above techniques. For example, using

locks when there is no contention or when an atomic section contains an irreversible

operation, and transactions otherwise [WHJ06].

While nobody yet knows what is the best way of implementing atomic sections, transactional

memory seems to be the most popular approach. However, it has a number of drawbacks, most

14 Chapter 1. Introduction

notably being poor support for irreversible operations such as I/O and system calls. Other

drawbacks include high run-time overheads in both contended and uncontended cases and a

large amount of wasted computation.

1.5 Lock inference

Lock inference is a promising alternative to transactional memory: firstly, it does not limit

expressiveness, secondly, it provides excellent performance in the common case of where there

is no contention and thirdly, it can have significantly less run-time overhead. Initially, it may

seem that we are reinviting the problems associated with locks, however, a combination of static

analyses and run-time support are typically used to overcome them.

We argue that transactional memory’s inability to support I/O and system calls is a significant

disability, and is the reason why we have pursued an implementation using lock inference

instead.

1.6 Lock inference for Java

Lock inference has a number of advantages over transactional memory, but in order for it to

be useable, it is necessary to be able to apply it to languages that programmers currently use.

However, prior lock-inference work has paid little to no attention to this.

Programming languages typically come with a rich set of libraries that provide common func-

tionality, such as maintaining a hash table or performing I/O. However, libraries create a

scalability challenge for static analysis [RSX08] because they are large and have a high cyclo-

matic complexity.1 This leads to very long analysis times and lots of imprecision in analysis

results.

1Cyclomatic complexity [McC76] is a measure of the number of linearly independent paths. Library call
chains can be long and consist of large strongly connected components.

1.6. Lock inference for Java 15

Although for libraries the issue of long analysis times is not important, as the results would only

be computed once, actually being able to analyse the library and reducing the imprecision that

the library introduces into analysis results are important problems. The former determines

whether such an analysis is even possible and the latter will have an impact on what locks are

inferred and thus the resulting performance of the instrumented program. These are significant

challenges for lock-inference approaches because most real programs make extensive use of

libraries. For example, consider a “Hello World” program written in Java extended with atomic

sections:

atomic {

System . out . p r i n t l n ("Hello World!") ;

}

Lock inference does not perform rollback and is thus able to support I/O, so one would ex-

pect it to be able to handle this library call. In practice, this example is non-trivial with a

compile-time call graph containing 1150 library methods (for GNU Classpath 0.97.2p10) as

shown in Figure 1.6. Analysing the library is a hard problem as is evident from the fact that

existing work either ignores libraries [HFP06, CCG08, EFJM07, ZSZ+08], requires library im-

plementers to annotate which method parameters should be locked prior to the call [MZGB06]

or only considers accesses performed up to one-level deep in library call chains [HPV07]. All

of these have the potential that some shared accesses performed within the library may go

unprotected, leading to atomicity violations.

Inspecting the call graph for “Hello World” reveals that these methods come from println(s)’s

call to s.getBytes(encoding), which converts the string s to an array of bytes as per the

character set with name encoding. It does this by delegating to the corresponding instance of

Charset. However, it is this delegation that leads to the huge number of methods.

Charset instances are provided by one or more CharsetProvider instances. Two default

CharsetProviders are readily available that supply the most commonly used Charsets (e.g.

UTF-8). Third-party CharsetProviders can also be loaded from the classpath. First, the two

default CharsetProviders are queried for the required Charset. This results in lazy instantia-

16 Chapter 1. Introduction

Figure 1.6: A call graph for the “Hello World” atomic section, containing 1150 methods. Each
method is represented with a red circle.

tion and initialisation of the CharsetProviders (and instantiation of their combined total of 99

Charset instances plus storage of these instances in the respective CharsetProvider’s internal

HashMap collection). Creating a CharsetProvider is a privileged action, so it is performed

through the AccessController class. This involves saving the current security context, creat-

ing a new security context, running the privileged action in this new context and then restoring

the saved context once finished. If the required Charset instance is not found, third-party

CharsetProvider classes are loaded reflectively from the classpath. This involves finding all

resource files containing lists of CharsetProvider class names, iterating through each line of

each file and loading each class. Loading a CharsetProvider class is also a privileged action

that must therefore be performed through the security framework. These loaded Charset-

Providers are then individually instantiated and queried for the necessary Charset instance.

Once the string has been encoded with the specified character set, the returned byte array is

written to PrintStream’s underlying BufferedOutputStream, followed by the bytes for the

line separator. Finally, the entire buffer is flushed to standard output. If this I/O operation

is interrupted, an InterruptedIOException is thrown, resulting in the current thread being

1.7. Contributions 17

interrupted by setting its interrupt status bit. Modifying the status of a thread is a privileged

action.

Most of the large number of object accesses just described are performed only under special

circumstances, such as when interrupting a thread or creating CharsetProvider and Charset

instances for the first time. Unfortunately, lock inference is a static technique and must therefore

conservatively ensure that all possible execution paths are protected.

This is perhaps the simplest program we would expect lock inference to be able to handle, but

even the path-inference analysis David Cunningham and I had previously developed [CGE08,

Cun10, Gud07] was not able to scale to it. What this tells us is that special techniques need

to be developed to tackle:

• Complexity: analyses need to be able to scale to the large code base and cyclomatic

complexity of libraries.

• Precision: due to their widespread use, many common code paths and large numbers of

rarely executed code paths, libraries can introduce many more locks than are required.

Techniques are needed to reduce this number.

• Performance: the resulting performance should be comparable to that obtained from

manually-inserted locks. If this is not the case, then lock inference will not be seen as

desirable.

1.7 Contributions

The thesis we argue is the following:

It is possible to develop lock-inference techniques that scale to real-world Java programs that

make use of the library and still obtain performance comparable to manually-inserted locking.

The contribution of this thesis is a set of techniques that achieve the above. In particular, we

present:

18 Chapter 1. Introduction

• A scalable and precise object-access inference analysis for inferring which Java objects are

accessed from within an atomic section, based on Sagiv et al.’s IDE framework [SRH96].

Our analysis is the first to be able to analyse library methods in full. We demonstrate

its scalability by analysing the entire 122KLOC GNU Classpath 0.97.2p10 library (Chap-

ter 3).

• A set of optimisations for this access-inference analysis that significantly reduce its space

and time requirements, and which enable our approach to scale to even larger code bases,

such as the 150KLOC hsqldb. In particular, we describe summarising control flow graphs,

delta propagation, worklist ordering and parallel processing of worklists (Chapter 4).

• A set of optimisations to reduce locking overhead. We identify thread-local, instance-local,

class-local, method-local, dominated and read-only objects and remove locks for them.

We also dynamically elide locks when there is only a single thread executing (Chapter 5).

• A fast implementation of Gray et al.’s [GLP75] multi-granularity locks, based on Lea’s

Synchronizer framework [Lea05] (Chapter 5).

• An implementation of all our analyses in the Soot [VRCG+99] bytecode optimisation

framework. We also make accompanying modifications to Jikes RVM [AAB+05] for effi-

cient run-time support (Chapter 3, Chapter 4, Chapter 5).

• An extensive evaluation of our techniques on real-world Java programs built on top of the

GNU Classpath library. Despite protecting all library accesses, we obtain a slowdown of

only 3.5x compared with manually-inserted locks in the case of hsqldb, and see speedups

for the sync and bank benchmarks. For the remaining benchmarks, we obtain similar

performance (Chapter 3, Chapter 4, Chapter 5).

1.8 Publications

During the PhD, I have published the following papers:

1.8. Publications 19

• Lock Inference in the Presence of Large Libraries [GHE12]

Khilan Gudka, Tim Harris, Susan Eisenbach

European Conference on Object-Oriented Programming 2012

Used in Chapter 3, Chapter 4 and Chapter 5.

• Fast Multi-Level Locks for Java [GE10]

Khilan Gudka, Susan Eisenbach

EC2 2010: Workshop on Exploiting Concurrency Efficiently and Correctly

Used in Chapter 5.

• Keep Off The Grass: Locking the Right Path for Atomicity [CGE08]

David Cunningham, Khilan Gudka, Susan Eisenbach

Compiler Construction 2008

Used in Chapter 3.

20 Chapter 1. Introduction

Chapter 2

Background

Before delving into the technical contributions of this thesis, we first visit some background

areas to set the scene for our work. In particular, we look into the history of atomic sections,

implementation techniques, relevant concepts from program analysis and survey prior lock-

inference approaches.

2.1 Atomic sections

Atomic sections were first proposed by Lomet in his 1977 paper [Lom77]. However, they have

only recently come into the forefront of programming language research. The last 10 years

in particular have seen a huge upsurge in interest, with the majority of contributions being

made in the sub-area of transactional memory. Lock inference has also attracted contributions

and is seen as an important alternative and perhaps ultimately a complementary approach. In

fact, a mature implementation of atomic sections will probably involve a marriage of the two

techniques. We begin by looking more closely at the semantics of atomic sections.

21

22 Chapter 2. Background

2.1.1 Semantics of atomic sections

Conceptually, atomic sections execute as if in ‘one step,’ abstracting away the notion of inter-

leavings. However, enforcing such a guarantee is not always entirely possible, due to limitations

in hardware, the nature of the implementation technique or the performance degradation that

would result. To make the particular atomicity guarantee offered by an implementation explicit,

two terms have been defined in the literature [LR06, BLM05]:

• Strong isolation: the intuitive meaning of atomic sections as appearing to execute atom-

ically to all other operations in the program regardless of whether these other operations

are in atomic sections or not.

• Weak isolation: atomicity is only guaranteed with respect to other atomic sections.

Ideally, atomic sections should provide strong isolation, as this is what programmers expect

and is what makes them such a useful abstraction. However, the performance degradation that

results from enforcing it may be too high thus resulting in a trade-off between performance and

ease of programming. However, a number of optimisations have been proposed for transactional

memory to reduce this overhead [AHM09, HG06b, SMSAT08], with Abadi et al. [AHM09]

reporting performance within 25% of an implementation only guaranteeing weak isolation.

It should be noted that providing strong isolation does not mean that an implementation has to

directly support it. In fact, an implementation may only provide weak isolation but strengthen

it by using a static analysis to detect conflicting shared accesses occurring outside atomic

sections and subsequently wrap them inside atomic{}. Recent work by Abadi et al. [ABH+09]

has looked at a dynamic approach which verifies, at run-time, that atomic accesses of shared

data never coincide with non-atomic accesses of it. That is, during its lifetime, an object can

be accessed both inside atomic sections (termed a protected access) and outside (termed an

unprotected access) but never both simultaneously. If while in protected mode, an unprotected

access never occurs; and while in unprotected mode, a protected access never occurs, then the

program will run with strong isolation semantics. They call this dynamic separation.

2.1. Atomic sections 23

Prior lock-inference techniques all assume weak isolation and we do also in this thesis.

2.1.2 Serialisability and two-phase locking

When we say that all atomic sections appear to have occurred in ‘one step,’ what this really

means is that any concurrent execution involving them should be serialisable. Serialisability is

a correctness condition from the database community [RG00] that (when adapted for atomic

sections) states:

A concurrent execution involving atomic sections is serialisable, if it is equivalent to an execu-

tion in which all atomic sections are executed in some serial order.

Atomic sections can interleave their execution with other operations provided that the resulting

concurrent execution preserves the above condition. In the case of strong isolation, this would

additionally mean ensuring serialisability with respect to all shared accesses that are not inside

atomic sections.

For transactional memory, serialisability is typically achieved by buffering updates. In lock

inference, it is necessarily done by following the two-phase locking protocol (2PL). 2PL also

originates from the database community [RG00] and it dictates a restriction on the locking

policy that guarantees a serialisable execution. This restriction is that no lock() operation

should be performed once an unlock() has been performed. As a result, the program will

consist of two locking phases: a growing phase during which locks are acquired, followed by

a shrinking phase during which locks are released. Figure 2.1 shows a visualisation of these

phases.

A simple example would be a basic policy that acquires all necessary locks at the start of the

atomic section and releases them at the end. However, this may drastically impact concurrency,

especially when objects are required for a short period of time and other atomic sections are

waiting to access them. Additionally, atomic sections that require a large number of locks may

have to wait a long time before they can start. In the worst case, they may never get to execute.

To enable more parallelism, several variations of this basic policy exist [FR02]:

24 Chapter 2. Background

Growing phase Shrinking phase

N
u
m

b
e
r

o
f
lo

c
k
s
 h

e
ld

Time

Figure 2.1: Locking policies that adhere to two-phase locking will guarantee serialisability.

• Late locking (or strict 2PL): locks are not acquired until absolutely necessary and are

released at the end of the atomic section. For example, each lock is acquired just before

the object it protects is accessed for the first time. The advantage is that atomic sections

spend less time waiting to start. However, late locking is complicated by the ordering on

locks for avoiding deadlock. In the worst case, the resulting policy can be the same as

the basic one.

• Early unlocking: locks are acquired at the beginning of the atomic section, but are

released when no longer required. This can achieve more parallelism than the basic policy,

however it requires knowing when objects are no longer needed. This can be difficult at

compile-time.

• Late locking and early unlocking: locks are acquired only when they are needed, and

once no more locks need to be acquired, they are released as they are no longer required.

This policy can achieve more parallelism than the above two but it is complicated by

their respective issues.

2.1. Atomic sections 25

2.1.3 Atomic section nesting: flat, closed or open nesting

For composability, it is important that atomic sections support nesting. This can trivially be

achieved by considering nested atomic sections to be part of the outermost section, however

unnecessary contention can occur as a result. Furthermore, it may be necessary to commu-

nicate shared state out of an atomic section, such as for communication between threads.

Consequently, a number of different nesting semantics have been developed [NMAT+07]:1

• Flat nesting: any nesting structure is flattened so that all nested atomic sections are

part of the outermost section. As a result, a conflict detected in a nested section causes

the entire outermost atomic section to rollback.

• Closed nesting: each nested transaction executes in its own context. That is, it performs

its own validation for the locations it has accessed. If a nested transaction commits (i.e.

no other thread has performed conflicting updates to the locations it has accessed), then

its changes are merged with the parent’s read/write set. This has the advantage that

conflicts are detected earlier and only requires rolling back the transaction at the current

nesting level, although the outermost transaction will still need to validate these accesses

in case another thread has performed a conflicting update before it reached the end.

Other threads do not see the changes until the outermost transaction commits.

• Open nesting: closed nested transactions can still lead to unnecessary contention, given

that updates made by child transactions are not propagated to memory until the end of

the outermost transaction. As a result, another type of nesting semantic has been pro-

posed, which actually makes the updates of a nested transaction visible to other threads.

This has the advantage that it permits shared state to leave atomic sections, such as

for communication between threads, although it has the disadvantage that other threads

may see dirty state if the outermost transaction later aborts. Mechanisms such as lock-

ing [NMAT+07] are required to overcome this. Furthermore, programmers must supply

undo operations to undo the effects of the open nested transaction, given that simply

1These have been proposed in the context of transactional memory but could also apply to atomic sections
more generally.

26 Chapter 2. Background

restoring a log will not suffice as other threads may have performed updates in the mean

time.

For lock inference, as there is no buffering of updates, there is no distinction between flat and

closed nesting. A lock can be released once we are sure that the associated shared data will no

longer be accessed or that no other lock will be acquired (two-phase locking requirement above).

Consequently, it is possible for lock inference to have open-nesting-like semantics, although all

prior approaches and the ones presented in this thesis assume flat nesting (i.e. locks are either

all acquired at the start of the outermost atomic section or as and when required, but are

always released at the end of the outermost section).

2.2 Transactional memory

Transactional memory is the most popular way to implement atomic sections. It provides the

abstraction of database-style transactions [EGLT76] to software programs, whereby a trans-

action in this context is a sequence of memory operations whose execution is serialisable or

equivalently, has the properties of atomicity, consistency and isolation.2 That is, each trans-

action either executes completely or it does not (atomicity), it transforms memory from one

consistent state into another (consistency), and the result of executing it in a multi-threaded

environment is equivalent to if the transaction was executed without any interleavings from

other threads (isolation).

These semantics can be achieved in a number of different ways [Enn06], although the predom-

inant approach is to execute transactions using optimistic concurrency control. This is a form

of non-blocking synchronisation in which transactions are executed assuming that interference

will most probably not occur; that is, another thread is highly unlikely to write to locations

that it accesses. To ensure atomicity, tentative updates are buffered during execution and com-

mitted atomically at the end. For isolation, this commit is only allowed to proceed if another

2Transactions in database theory have the additional property of durability, although this is irrelevant here
as we are concerned with interactions between threads that occur through main memory, which is volatile.

2.2. Transactional memory 27

transaction has not already performed a conflicting update. This typically requires storing the

initial value for each location accessed and validating that they remain unchanged. If a conflict

is detected, the tentative updates are discarded and the transaction is reexecuted. Note that

consistency automatically follows provided that the programmer has ensured that invariants

would be maintained if the transaction was executed in isolation.

Transactional memory provides a number of potential advantages over traditional blocking

primitives such as locks, including:

• No deadlock, priority inversion or convoying: as there are no locks. However, in

theory a slightly different form of priority inversion could still occur if a high-priority

thread was rolled back due to an update made by a low-priority thread.

• More concurrency: recall that with locks, the amount of concurrency possible is de-

pendent on the locking granularity. However, as the number of locks increase, so does the

complexity involved in managing them and thus programmers may end up settling for

policies that afford sub-optimal levels of concurrency. Transactional memories provide the

finest possible granularity (at the word level) by default, resulting in optimal parallelism.

However, this comes at the cost of increased overheads.

• Automatic error handling: memory updates are automatically undone upon rollback,

reducing the need for error handling code [Har03]. However, this is orthogonal to the

topic of atomicity; the primary benefit of atomic sections is that they ensure sequential

semantics.

• No starvation: transactions are not held up waiting for blocked/non-terminating trans-

actions, as they are allowed to optimistically proceed in parallel even if they perform

conflicting operations.

However, these advantages rely on being able to rollback in the event of a conflict. This proves

to be a huge limitation for atomic sections, as it prevents them from containing irreversible

operations such as system calls and most types of I/O. In addition, allowing conflicting trans-

actions to proceed in parallel poses a problem for large transactions that may be repeatedly

28 Chapter 2. Background

rolled back due to conflicts with many smaller ones (livelock). Even in the general case, it

leads to wasted computation when transactions are rolled back, not to mention the overheads

incurred during logging and validation. A number of workarounds have been proposed, such as

buffering I/O [Har05] and contention management [SIS05], but no general solution exists yet.

In comparison, lock inference does not suffer from these problems because of its pessimistic

nature. Nevertheless, transactional memory still seems to be the most popular technique for

implementing atomic sections, with many hardware, software and hybrid implementations hav-

ing been proposed. We now look at these in a bit more detail.

2.2.1 Hardware transactional memory (HTM)

The original proposal for transactional memory was a hardware implementation by Herlihy and

Moss [HM93], who showed that transactions could be supported using simple additions to the

cache mechanisms of existing processors, and by exploiting existing cache coherence protocols.

Their HTM executed transactions optimistically, keeping separate read and write sets for each

transaction in a small transactional cache. However, it had the limitations that (1) it could only

support transactions up to a fixed size (where size refers to the number of memory locations

accessed) and (2) transactions could not survive scheduler pre-emption.

These limitations were due to there being a bounded amount of available transactional re-

sources. As a result, many early HTMs were best-effort [KCH+06]. A best-effort HTM provides

efficient support for as many transactions as available resources allow, but does not guarantee

to be able to commit transactions of any size or duration. However, these size and duration

restrictions are highly architecture dependent, thus removing many of the software engineering

benefits of transactions, as programmers have to make assumptions about hardware.

Hence, most recent work in HTMs has concentrated on providing support for larger or even

unbounded transactions (both in terms of size and duration). Example techniques include, over-

flowing transactional state into a table allocated in memory by the operating system [AAK+05]

and also into a thread’s virtual address space [AAK+05, RHL05, MHW05]. However, as these

2.2. Transactional memory 29

data structures have to be traversed in hardware, the result is a more complicated HTM.

Conclusion

HTMs provide the advantage of superior performance in comparison to software implementa-

tions. However, their main limitation is that they require architectural change. Transactions

in databases have been around for a long time and are in widespread use, yet we have not

seen hardware support being introduced to improve their performance. Thus, proposals face

the tough task of convincing chip manufacturers that HTMs are necessary and also relatively

simple to add to their existing designs. This is complicated by the fact that they must support

large/unbounded transactions, with current hardware-only designs being inherently complex.

Nevertheless, things are on the turn with Intel announcing that its upcoming Haswell processor

will contain HTM support [Rei12].

The other problem is portability. Early proposals imposed architectural-dependent limitations;

however, new hybrid approaches [KCH+06] improve things by providing an abstraction layer

decoupling the underlying HTM from the program, utilising hardware support when available

otherwise transparently resorting to software transactional memory if not or if the HTM does

not have sufficient resources. Such proposals also simplify the hardware design as HTMs only

have to be best-effort.

HTMs are irrelevant for lock inference given that the latter does not use transactions, although

a hybrid or the lock implementation could benefit from better performance with hardware

support.

2.2.2 Software transactional memory (STM)

To overcome the limitation of requiring specialised hardware, Shavit and Touitou [ST95] pro-

posed a software variant called software transactional memory (STM). Transactional memory

was originally motivated by the need for easier and more efficient ways of implementing non-

blocking synchronisation operations, as it was thought that the key to highly concurrent pro-

30 Chapter 2. Background

gramming was to decrease the number and size of critical sections or even eliminate them by

implementing programs as non-blocking [HM93, ST95]. Consequently, Shavit and Touitou’s

initial STM and many other early implementations [Fra04, FH07, HLMSI03, Moi97] focused

on being non-blocking.

However, recently it has been shown that such a guarantee is not necessary and by dropping

it, significantly better performance can be achieved [Enn06]. Hence, many newer STMs have

omitted the non-blocking requirement and instead use a combination of optimistic synchronisa-

tion and locks [DSS06, Enn06, HPST06] or only locks [HG06a, SATH+06] (although, it should

be noted that the latter class of STMs still retain the need for transactions to be abortable, in

order to dynamically avoid deadlock and starvation). This gives promising evidence that using

locks for implementing atomic sections is definitely a step in the right direction.

STM is an active area of research with a lot of progress having been made over the last few years.

Other developments include object-based STMs [HLMSI03, AR05, HPST06], better support

for nested transactions [MH06], customisable contention management [GHKP05, HLMSI03,

SIS05], conflict-driven notification [HMPJH05, CMC+06] and improved support for I/O and

exceptions [Har05, Har03].

Even though there have been many advances, the main focus has been on improving perfor-

mance [HPST06]. Hence, a lot more work still needs to be done to address issues hindering

their practicality as an implementation mechanism for atomic sections. In this section, we look

in a bit more detail at how STM research has evolved since 1995 and its implications as an

implementation technique for atomic sections.

Word-based versus object-based STMs

Just as locks can protect data at the level of words or objects, STM implementations also

differ in the granularity at which they detect contention. In word-based STMs [ST95, HF03,

HMPJH05], the unit of concurrency is an individual memory word. That is, contention is con-

sidered to occur when threads access the same location in memory. Object-based STMs [Moi97,

2.2. Transactional memory 31

FH07, Fra04, HLMSI03, AR05, HG06a, HPST06] on the other hand, are higher-level and see

memory as being organised as a number of blocks (group of memory words) or objects. In

these systems, contention is considered to occur when threads access the same block/object,

even though they may be accessing different words within it.

Word-based STMs have the advantage that they are finer-grained and thus may permit more

parallelism than object-based ones. For example, they allow threads to update different fields of

the same object concurrently. However, this typically incurs higher overheads both in space and

time, and also does not correspond very well with modern programming paradigms. Object-

based STMs on the other hand are coarser, but as a result have fewer overheads and are easier to

implement for object-based languages. They are also more closely aligned to the synchronisation

constructs typically found in object-oriented languages, such as synchronized.

A significant advantage of object-based STMs is that they do not incur additional costs during

reads and writes. This is because they typically clone objects before first accessing them and

proceed with using the clone; thus, they can use normal read and write operations. Word-

based STMs on the other hand, require searching a log on every read/write to obtain the most

up-to-date value, which incurs huge overheads. However, to efficiently facilitate the cloning

approach, a level of indirection is required for referencing objects so that it is possible to

change which object a reference points to atomically (e.g. using CAS) when the transaction

commits. Furthermore, while the cost of cloning small objects is not so bad, large objects pose

a problem. Potential solutions include representing large objects as functional arrays [AR05].

Given that object-based STMs have lower overheads, this is the most common type of STM

found in the literature at present. Moreover, the above technique of cloning is the most typical

approach used in object-based STMs [Fra04, HLMSI03, Moi97], although other techniques

such as maintaining lists of reading and writing transactions in each object have also been

proposed [AR05].

32 Chapter 2. Background

class Counter {
int counter = 0 ;

void increment () {
while (!CAS(&counter , counter , counter +1)) { }

}
}

Figure 2.2: A non-blocking implementation of the Counter class of Figure 1.2.

Non-blocking STMs

As already mentioned, initial STM implementations were non-blocking. In a non-blocking im-

plementation, the suspension or failure of any number of threads cannot prevent the remainder

of the system from making progress, thus providing robustness against poor scheduling deci-

sions as well as arbitrary thread termination/failure [FH07]. Consequently, it prohibits the use

of ordinary locks because, unless the thread that currently holds the lock continues to run,

the lock can never be released and therefore the non-blocking semantics cannot be guaran-

teed. Instead, it relies upon the provision of special instructions, such as Compare-and-Swap

(CAS) or Load-Linked/Store-Conditional (LL/SC) that perform atomic updates on memory.

For example, Figure 2.2 is a non-blocking implementation of the Counter class in Figure 1.2

that uses CAS. This instruction takes three arguments: the memory location to be updated,

its expected value and the value to update it to. If the current value of the counter field is as

expected, then it performs the update (atomically) and returns true, otherwise it does nothing

and returns false. In this way, it tries to ensure that the update is atomic.3

Non-blocking algorithms can be classified according to the kind of progress guarantee they

provide [FH07]:

• Obstruction-freedom: this is the weakest form of progress assurance: a thread T is only

guaranteed to make progress so long as it does not contend with other threads for access

to any location at the same time. This implies that conflicting threads (also referred to as

obstructing) which are not running cannot prevent T from progressing, thus requiring that

3It cannot guarantee that the update is atomic, as a sequence of updates by other threads that ends in setting
the value of counter to the expected value will go undetected. This is known as the ABA problem [MS98].

2.2. Transactional memory 33

a transaction be able to rollback and retry.4 When there is contention, however, it does

not prevent the possibility of livelock, whereby a thread cannot progress because other

threads keep obstructing it. The chance of this occurring is reduced using a contention

manager, which determines what to do when contention for memory is detected. Example

policies include exponential backoff 5 and aborting the conflicting transaction [HLMSI03].

In the case of backoff, the contention manager ensures that a transaction is not backing off

indefinitely by aborting the conflicting transaction after a threshold is reached. Note that

this does not guarantee the absence of livelock as a transaction may repeatedly conflict

with different transactions.

Research shows that the choice of contention management policy is application-specific

and can have a significant impact on performance [SIS05].

• Lock-freedom: adds the requirement that the system as a whole makes progress, even if

there is contention. In some cases, lock-free algorithms can be developed from obstruction-

free ones by adding a helping mechanism: if thread T2 encounters thread T1 obstructing

it, then T2 helps T1 to complete T1’s operation. For example, it may assist in committing

T1’s updates for it or yield the processor. Once that is done, T2 can proceed with its own

operation and hopefully not be obstructed again. This is sufficient to prevent livelock,

although it does not offer any guarantee of per-thread fairness [FH07, Fra04].

• Wait-freedom: adds the requirement that every thread makes progress, even if it ex-

periences contention. This gives a hard bound on the number of instructions that are

executed to perform any operation and thus is the strongest non-blocking progress guaran-

tee. However, it is seldom possible to develop wait-free algorithms that offer competitive

practical performance [FH07]. Kogan et al. [KP12] propose a methodology to improve

their performance by creating hybrid data structures that use a lock-free version most

of the time, only reverting to a wait-free version when things go wrong. They call this

technique fast-path-slow-path.

4The suspended obstructing threads would be rolled back whereas T could complete executing.
5With an exponential backoff policy, a transaction T waits for a while before reexecuting. The period of

time T has to wait is doubled each time it rolls back.

34 Chapter 2. Background

Shavit and Touitou’s initial STM [ST95] was word-based and lock-free, using helping to achieve

this. In their implementation, each transaction acquires ownership of all locations being ac-

cessed in it (specified upfront by the programmer) before executing the body of the transaction.

If a location has already been acquired by another transaction, it helps the conflicting trans-

action before releasing the locations it has already acquired and restarting. Each thread has

an associated record which is used to store information about its current transaction, such as

the memory locations being accessed, its current status and a number of other fields used to

synchronise with threads that may help it.

Lock-free algorithms typically use recursive helping [Fra04], however this can be costly in terms

of performance [ST95]. Shavit and Touitou’s STM avoids recursive helping by ensuring that

memory locations are acquired in order and by restarting transactions after they have helped

a conflicting transaction. Consequently, it is much more efficient than traditional lock-free

approaches [ST95], although it also has a number of disadvantages, including:

• Static transactions: helping requires that locations are acquired in some global order,

hence the programmer has to specify upfront which memory locations are accessed in

the transaction. This was deemed acceptable in the paper because STM was designed to

make it easier to implement higher-level non-blocking synchronisation operations such as

multi-word CAS (MCAS) [FH07], which require knowing the memory locations in advance

anyway. However, this is not feasible in the general case, such as for traversing dynamic

data structures where it is not known in advance which memory locations will be accessed.

Furthermore, having to specify all memory accesses upfront also breaks modularity.

• Memory overheads: a vector, the same size as memory is required to hold information

about which transaction owns the corresponding memory word. This indirection is typical

of non-blocking approaches and is one of their disadvantages. Consequently, performance

also suffers because additional cache misses will be incurred when reading a memory word.

On the other hand, such fine granularity allows more parallelism.

• Helping overhead: the only justifiable need for helping is in case the thread executing

the conflicting transaction has failed. This could be due to a hardware failure or a

2.2. Transactional memory 35

computer failing in the case of a distributed system. However, distributed applications

are a niche and processor failures are extremely unlikely. Lock-free programs have to

provide such mechanisms due to the guarantee they promise, but such assurances are not

in general necessary for atomic sections [Enn06].

On the other hand, Shavit and Touitou’s STM has the advantage that it does not incur the

overheads of logging present in many other STMs, given that threads are only aborted before

acquiring ownership of all required memory locations. Nevertheless, the requirement for speci-

fying accesses upfront, the unnecessary overheads caused by helping and the memory cost make

it undesirable.

Later non-blocking implementations include Moir’s lock-free and wait-free STMs [Moi97]. The

lock-free version splits memory up into a fixed number of blocks, which form the unit of con-

currency (object-based STM). It overcomes some of the limitations of Shavit and Touitou’s

STM such as the need to specify upfront which memory locations are accessed. However, it

introduces additional drawbacks as a result. In particular, this approach uses optimistic syn-

chronisation as described earlier and thus introduces the need for logging, with writes being

performed on copies of blocks and version numbers being used to detect conflicts. This results

in significant performance overheads due to searching the log on each access, validation, copy-

ing blocks, committing, etc. Reads can be especially expensive because incremental validation

is performed (that is, the STM validates that the block being read from is still consistent on

each read). The rationale for this is that if the block being read from has been updated by

another thread, then the transaction is sure to fail and so should not carry on otherwise it

could lead to situations that would not otherwise occur in a serial execution of the transaction,

such as memory access violations, infinite looping and arithmetic faults [MSIS04]. Other signif-

icant disadvantages include wasted computation performed by a transaction that is destined to

abort. In STMs that only perform validation just before committing [HLMSI03, HMPJH05],

this is a big drawback, although in Moir’s implementation validation is incremental and thus

conflicts are detected earlier. Benchmarks show that how often validation should be performed

is application-specific [MSIS04].

36 Chapter 2. Background

Counter counter = new Counter () ;
TMObject tmObject = new TMObject (counter) ;

(a)

Counter counter = (Counter) tmObject . open (WRITE) ;
counter . increment () ;

(b)

Figure 2.3: Example of opening an object before accessing it in object-based STMs [HLMSI03].
Shared objects have to be encapsulated within wrapper objects to allow them to be changed
atomically (a). To access the original object in a transaction, the wrapper must be ‘opened’ (b).
This opening process may perform bookkeeping, acquisition and/or consistency checks. The
specific things differ between STMs. For example, in DSTM, opening an object in write mode
causes it to be acquired while in FSTM, a copy of it is added to the transaction’s read-write list.
Note that it is required that other objects only keep references to these wrapper objects and
not the original ones, otherwise it would be possible to bypass the transactional mechanisms.

More recent non-blocking STMs include Fraser’s FSTM [Fra04, FH07] and Herlihy et al.’s

DSTM [HLMSI03, HLM06]. These are both object-based and support dynamic transactions,

however FSTM is lock-free and uses recursive helping, while DSTM is obstruction-free and

uses contention management. Both clone an object before writing to them and thus require

indirection for object references. This is achieved using wrapper objects that hold references

to the real ones. In FSTM, this wrapper object is called an object header and simply holds a

reference to the actual object, while in DSTM, it is called a TMObject and instead contains a

reference to a Locator object, which in turn holds a reference to the descriptor of the transaction

that last updated this particular object as well as the current and last versions of the object.

The reason for this extra level of indirection will become clear later.

Before objects are accessed inside transactions, they have to be ‘opened’ (see Figure 2.3 for

an example). An object can be opened in read mode or write mode. In both approaches,

opening an object in read mode causes it to be added (just a reference to, not copy of) to the

transaction’s read list, while opening an object in write mode has differing semantics:

In DSTM, this results in acquiring the object. In particular, it creates a Locator object storing

(1) a reference to this transaction, (2) the current value of the object and (3) a copy of it. It

then uses CAS to automatically switch the current Locator object to this new one. If the

transaction that is being referenced by the current Locator object is still active, this means

2.2. Transactional memory 37

there is contention and subsequently a contention manager is queried for what to do (wait,

abort, etc). FSTM on the other hand allows multiple transactions to optimistically write to

the same object at the same time. Thus, it instead adds a copy of the object to a read-write list

for the current transaction. Contention is not checked for until commit time because it must

acquire objects in some global order to ensure that help cycles do not occur and thus must wait

until all objects have been opened (upon trying to acquire an object already acquired by another

transaction, the current transaction recursively helps the conflicting one before restarting). This

is due to it being lock-free and consequently leads to significantly more wasted computation. On

the other hand, DSTM requires an extra level of indirection for acquiring objects upon opening

them and thus may experience slower reads and writes as a result. Although, acquiring objects

instead of optimistically updating them means that at commit time, all the transaction needs

to do is make sure that it has not been aborted.

Nevertheless, both approaches still have to validate that what they have read is still consistent.

This cannot be delayed till the end of the transaction, because objects may be modified by other

threads while the current transaction is executing (as copies are not made for reads). This is of

significance because it can lead to problems such as infinite looping, memory access violations

and arithmetic faults [MSIS04]. Consequently, validation has to be performed on each “open

for reading” operation, which can be extremely expensive and is thus a significant problem with

optimistic approaches [MSIS04]. Furthermore, with FSTM, ensuring that objects are acquired

in order requires sorting their addresses before a commit. One alternative is to keep the read-

write list sorted, although the overheads would then be incurred when inserting [MSIS04].

In summary, FSTM provides nice progress guarantees but requires that objects be acquired in-

order to prevent help cycles and thus has to support optimistic updates. Consequently, conflicts

are not detected until the transaction attempts to commit, potentially leading to significantly

more wasted computation and other overheads such as sorting. Furthermore, helping is only

really necessary if a thread has failed, given that it can perform the updates itself if it has

not. DSTM provides the weaker guarantee of obstruction-freedom and thus has a simpler and

more efficient implementation. In particular, it can acquire objects before writing to them,

thus removing the need for validating such objects, although it requires double indirection to

38 Chapter 2. Background

Figure 2.4: Data structures in Harris and Fraser’s word-based STM [HF03].

achieve this. This has the downside of potentially slower reads and writes. Moreover, both

have the disadvantage of requiring objects to be opened before accessing them plus the need

for incremental validation, which has a significant impact on performance given that it is done

whether there is contention or not. On the other hand, they do not require read/write barriers

as found in word-based STMs [HMPJH05, HF03].

Harris and Fraser proposed an obstruction-free word-based STM [HF03] and were the first to

consider using STMs for implementing atomic sections in modern object-oriented languages

such as Java. Unlike Shavit and Touitou’s STM that has an array of ownership records (orecs)

the same size as memory, this STM uses a hash table of orecs whose size does not have to match

that of memory (note that if the hash table is smaller, multiple locations will hash to the same

orec). Figure 2.4 illustrates this organisation. An orec may hold a version number or a pointer

to the current owning transaction for the locations that are associated with it (i.e. that hash

to it). Version numbers are used to detect conflicts and must be incremented (atomically) each

time one of the associated memory words is updated.

The other kind of structure are transaction descriptors which store the current status of each

active transaction and the memory accesses that it has made so far. Both reads and writes in

this STM are optimistic, thus transaction descriptors keep track of addresses accessed, their old

and new values and the old and new version numbers of those values (old values and versions are

those from before the transaction first accessed that particular orec, while the new values and

2.2. Transactional memory 39

versions are as a result of executing the current transaction so far). This imposes substantial

overheads while reading and writing because firstly, the descriptor has to be searched each

time for the latest values and secondly, version numbers have to be kept consistent. Note that

multiple locations may share version numbers, thus when updating a version number in the

transaction descriptor upon performing a write, the transaction also has to update all entries

in the orec corresponding to locations that map to the same orec.

When the transaction completes executing, it attempts to commit by temporarily acquiring all

orecs associated with the locations it has accessed. Acquisition involves installing a reference

to the transaction’s descriptor in these orecs and then changing the descriptor’s status to

COMMITTED, before actually writing the values to memory. However, this can only occur provided

that the orec has the same version number as that in the transaction descriptor. If the version

numbers differ or if the orec has already been acquired by another transaction, the commit

fails, acquired orecs are released and the transaction is aborted. Harris and Fraser [HF03] give

details of their STM.

This STM has a number of significant performance issues including the overhead of searching

logs during each read/write, the overhead of determining version numbers/keeping version num-

bers consistent as well as the possibility of transactions that access disjoint memory locations

contending with each other if they share orecs. Harris and Fraser [HF03] suggest improvements.

One interesting feature of this paper, however, is that the programmer can specify an entry

condition that must be true before the atomic section is executed. That is, the general form

of their atomic construct is: atomic (condition) { statements }. However, care has to be

taken to ensure that a nested atomic section does not have a contradicting condition, such as

n != 0 if the parent’s condition is n == 0 and n is not modified between them.

Omitting the non-blocking requirement

Semantically, non-blocking programs are desirable because they provide strong progress guar-

antees, which makes reasoning about them easier. However, this comes at the cost of implemen-

40 Chapter 2. Background

tation complexity and performance. Furthermore, such promises are often too strong, covering

too wide a range of scenarios, whereas weaker guarantees would suffice in most cases. In fact,

we are already seeing this trend, as newer non-blocking STMs are forsaking the assurances of

lock/wait-freedom and instead settling for the weaker property of obstruction-freedom because

it leads to simpler and more efficient implementations [HF03, HLMSI03, HLM03].

However, recent work suggests that even this weakest guarantee is a hindrance [Enn06]. The

main arguments for non-blocking STMs in the literature, aside from STMs originally being

designed for use in non-blocking programs, include [Enn06]:

• Prevents long-running transactions from blocking others: non-blocking STMs

allow conflicting threads to proceed in parallel and hence long transactions do not starve

smaller ones. However, this argument is flawed because in order for a large transaction

to be able to commit, no conflicts must occur while it is running. This would mean that

conflicting transactions should be blocked otherwise the long transaction would never

make progress.

• Prevents the system locking up if a thread is de-scheduled: some argue that the

system may lock up when using locks if a thread is de-scheduled while holding a lock.

This is not necessarily true because in the majority of cases, the thread will eventually

be scheduled again. We say the majority, because it is possible for a thread to be blocked

waiting for I/O which never comes, although the probability of this happening is low.

Also, STMs do not support I/O.

• Fault tolerance: when using locks, if a thread fails, it may not release ownership of any

locks it has acquired, subsequently preventing other threads from acquiring them indef-

initely. Non-blocking algorithms on the other hand employ mechanisms such as helping

or optimistic concurrency control enabling threads to continue even if other threads fail.

However, as was hinted earlier, this is only really of relevance for distributed applications

that have to deal with the possibility of communication failures. Failures are very unlikely

for local applications.

2.2. Transactional memory 41

These arguments seem to imply that non-blocking STMs have tried to provide a one-size-fits-all

solution to transactional programming. However, such guarantees are not necessary in general,

and as shown by Ennals [Enn06], lead to less efficient implementations. In particular, they

require indirection, have high logging overheads, require validation, lead to extensively wasted

computation and also suffer from the potential for data read to become inconsistent.

Consequently, subsequent STMs [Enn06, SATH+06, HG06a, DSS06] are omitting the non-

blocking property, resorting to hybrid blocking/non-blocking or only blocking approaches that

significantly reduce these overheads. These new implementations use locks, but whereas tradi-

tional ones can block a thread indefinitely thus leading to problems such as deadlock, starvation

and priority inversion, these locks can be revoked and given to a waiting thread. This means

that transactions must still be abortable and thus the overheads of logging writes and the

potential for wasted computation are still present. Furthermore, given that the locking policy

must be two-phase, a problem is introduced for long-running transactions, whereby they may

be repeatedly aborted because they hold on to locks past the ‘waiting period.’ Solutions such

as releasing locks early have been proposed but not yet tried [HG06a]. It is interesting to note

that using versions for reads and locks for writes seems to provide better performance than

using locks for both reads and writes [SATH+06]. This is because of the effects on cache that

occur from multiple threads updating the lock value and the expense of upgrading from read

locks to write locks.

In comparison, lock-inference techniques conservatively prevent deadlock, but given that they

use traditional locking, they suffer from the problem of starvation. Furthermore, transactions

do not require knowing which objects are accessed at compile-time and thus do not suffer from

the problem of aliasing and assignments (see Section 2.3), although they do have to enforce

two-phase locking. This is achieved by releasing locks at the end of the transaction [Enn06,

SATH+06] or only when required by another transaction (the holding transaction is first given

a chance to complete after which it is aborted) [HG06a]. Lock inference would avoid upgrading

read locks to write locks because of the potential for deadlock, however, the effects on cache

coherency of multiple threads updating the read lock is a problem and will need to be taken

into consideration.

42 Chapter 2. Background

AtomJava [HG06a] is a particularly interesting state-of-the-art lock-based STM because it is

a source-to-source translator for standard Java programs. Before accessing an instance field,

the thread acquires a lock on the object. Object locks are implemented as fields that hold a

reference to the currently owning thread (null indicates that the object is free to be locked).

Hence, when a thread locks an object, this currentHolder field points to it. When in an

atomic section, assigning to a field causes a log entry to be made, consisting of the object

reference, the old value and an UndoObject with an undo function that reverses the assignment

in the event of rollback (this undo code is automatically generated by the translator). If a

thread attempts to lock an object that is being held by another thread, it requests the thread

to release it as soon as possible and after a number of polite requests, the holding thread is

forced to rollback and the requesting thread is granted access. This provides fair scheduling,

ensuring that long transactions do not cause starvation, although one could envision the use of

contention managers that determine whether/when a lock can be revoked.

Conclusion

Although STM was originally intended as an easy and more efficient way of implementing

high-level non-blocking synchronisation operations, many think that it should be provided

as a generic abstraction in programming languages (that is, as an implementation for atomic

sections). This is because it can afford more parallelism than traditional locks; it does not suffer

from the problems of deadlock, priority inversion, convoying and starvation; and its ability to

rollback can also lead to some desirable abstractions for programmers [HMPJH05].

However, one significant hurdle it faces is expressiveness, given that atomic sections may con-

tain operations that cannot be reversed. Buffering is one proposed solution [Har05, HG06b],

although it requires rewriting I/O libraries and is not even applicable in all situations. For ex-

ample, consider an atomic section that performs a handshake with a remote server. Other

implementations forbid irreversible actions using the type system [HMPJH05], while some

throw exceptions [RG05], although these are not practical in general. Irrevocable transac-

tions [WSAT08] are a recent technique that enable irrevocable actions in transactions. When

2.3. Lock inference 43

an operation such as I/O is encountered, the transaction transitions to an irrevocable state

in which it will no longer rollback as a result of an external action performed by a different

transaction. As a result, the system will guarantee that its subsequent actions (including, for

example, I/O and system calls) will never be revoked and that its commit operation will suc-

ceed. However, only one irrevocable transaction is supported at once and rollback of revocable

transactions still occurs.

Another major problem of STM is the significant overhead encountered including wasted com-

putation that occurs due to executing transactions destined to abort. A lot of work has been

carried out to improve this over the last few years, such as the gradual omission of non-blocking

guarantees [Enn06], the introduction of object-based STMs [Moi97] and the ability to customise

contention management policies [HLMSI03, SIS05, WSAT08]. However, current state-of-the-

art lock-based STMs still require rollback to avoid deadlock and starvation. Consequently, they

still incur much overhead due to logging, given that the occurrence of deadlock is rare.

This thesis employs lock inference rather than software transactions, although we hope that this

section on transactional memory has given the reader a richer understanding of this competing

technique. Furthermore, it also serves to back our choice, given the recent trend of eliminating

the non-blocking guarantee: this demonstrates that using locks to implement atomic sections

is definitely a step in the right direction.

2.3 Lock inference

By far the most popular technique for implementing atomic sections at present is software

transactional memory (STM). However, as illustrated in the previous section, it has a number

of shortcomings which limit its practicality:

• Irreversible operations: atomic sections implemented using transactions are restricted

to operations that are reversible. In Harris et al.’s STM [HMPJH05], this is enforced

using the type system, however, this is not practical in more general languages such as

44 Chapter 2. Background

Java. Alternative solutions include buffering [Har05], mutual-exclusion locks [WHJ06]

and irrevocability [WSAT08].

• Performance overhead: STM incurs significant overheads due to logging, validation

and committing. In more recent STMs that use locks [HG06a], there is no need for an

explicit validate or commit phase, as they acquire ownership of objects before accessing

them. Nevertheless, they still have the overheads of logging in case they have to rollback

(in order to avoid starvation and deadlock).

• Wasted computation: CPU cycles used to execute a transaction that is later aborted is

wasted computation. This is inefficient as such CPU time could be used to execute other

threads. In one benchmark [HG06a], it was found that tens of rollbacks were occurring

per second.

• Need for hardware support: due to the performance implications of STMs, it almost

necessarily requires hardware support to be practical. However, HTMs are still not quite

there yet and face the tough task of convincing chip manufacturers of their usefulness. Al-

though Intel will provide HTM support in their upcoming Haswell processor [Rei12], it is

unclear whether such hardware support will become widespread in commodity processors.

These limitations exist because STM requires the ability to be able to rollback, which has a

negative effect on the expressiveness and performance of atomic sections.

Locks overcome these difficulties because they do not allow conflicting accesses to proceed in

parallel and thus do not require the need to undo. However, currently, lock-based synchronisa-

tion has to be manually enforced by the programmer and is therefore easy to get wrong with the

potential for introducing deadlock and even reintroducing races. This has led to a completely

different approach to implementing atomic sections that takes a preventative approach by using

locks but with little or no effort from the programmer.

Lock inference [MZGB06] statically infers the locks that need to be acquired to ensure atomicity

and inserts the necessary acquire and release operations. This is different from recent lock-based

STMs [HG06a] that also use locks, because lock inference ensures that locks are acquired in a

2.3. Lock inference 45

void m(Counter c) {
atomic {

c . increment () ;
}

}

apply lock−inference analysis−−−−−−−−−−−−−−−−−→

void m(Counter c) {
lockWrite (c) ;
c . increment () ;
unlockWrite (c) ;

}

(a) (b)

Figure 2.5: Lock-inference example that uses reader/writer locks. (a) is the original program
with atomic sections and (b) is the transformed version after applying the lock-inference anal-
ysis. The analysis identifies which objects are accessed and maps them to the locks needed to
protect them.

way that prevents deadlock, typically by imposing some ordering as a result of a whole program

analysis, whereas lock-based STMs acquire locks as and when they are required (that is, just

before accesses occur).

Figure 2.5 shows an example of how lock inference works. In Figure 2.5(a), Counter object

c is incremented inside an atomic section. A lock-inference approach first identifies which

objects are accessed and then maps these inferred accesses to the locks needed to protect them.

Finally, the lock-inference tool instruments the program with acquire and release operations

for these locks. In this particular example, a typical lock-inference approach would infer that

the Counter object c was being modified and then insert operations to acquire and release the

lock protecting c. The resulting transformed program is shown in Figure 2.5(b).

This approach has a number of advantages over STMs, in addition to not suffering from the

limitations mentioned above:

• Better performance in the uncontended case: a program typically contains some

shared objects that will be mostly contended and other shared objects that will be mostly

uncontended. The performance overheads of STMs are incurred regardless of whether

there is contention or not. Locking on the other hand, can be extremely efficient in the

uncontended case, with a lot of work having been done in optimisations for it [BKMS98,

ADG+99]. In some cases, this can be as cheap as setting/clearing a bit [WHJ06].

• Lower run-time overhead: lock-inference techniques may infer the deadlock-free lock-

46 Chapter 2. Background

ing policy at compile-time and thus the only run-time overheads are the lock/unlock op-

erations. These can be extremely efficient in the uncontended case, as mentioned above.

However, even in the contended case, techniques such as adaptive locking [Goe05] can be

used to reduce the overheads caused by suspending/resuming threads when locks are held

for short periods of time.

Lock inference relies on static analysis to determine the locking policy. This analysis has to

ensure good performance and freedom from deadlocks; however it must also be safe. That is,

the locking policy it infers should not lead to atomicity violations.

Before looking into the issues that must be taken into consideration to ensure a lock-inference

analysis meets these requirements and how existing work in this area has approached them,

we briefly visit program analysis to introduce concepts that will be needed to understand and

appreciate how lock inference works.

2.4 Program analysis

Lock inference relies heavily on program analysis to infer what objects are being accessed in

atomic sections and what locks protect these inferred object accesses. More generally, program

analysis allows us to approximate run-time behaviours of programs at compile-time. This

section provides a very brief overview of relevant concepts. For a detailed account, please refer

to [NNH99, KSK09].

2.4.1 Data flow analysis

The approach to program analysis that is of relevance to this thesis is data flow analysis. In this

technique, it is customary to think of a program as a graph: the nodes are simple statements

or expressions and the edges describe how control might pass from one simple statement to

another. This is called a control flow graph (CFG). Figure 2.6(b) shows an example graph

2.4. Program analysis 47

s = 0 ;
i = 1 ;
while (i <= 10) {

s = s + i ;
i = i + 1 ; }

s = s ∗ 2 ;

i = 1

i <= 10

s = s + i

i = i + 1

s = s * 2

s = 0

false

true

1

2

3

4

5

6

(a) (b)

Figure 2.6: (a) is a program that calculates double the sum of 1 to 10 and (b) is its control
flow graph (CFG).

for a program that calculates double the sum of 1 to 10. Nodes are labelled uniquely from 1

to 6. Notice the two edges coming out of the while condition node 3 corresponding to where

control flow proceeds to when the condition is true and false respectively. At compile-time,

we typically cannot determine exactly which of these edges will be followed, therefore we must

consider both of them. If statements are similar.

In a nutshell, data flow analysis works by pushing sets of ‘learned facts’ through the CFG until

they stabilise. There are broadly four types of data flow analyses depending on whether (a) we

want to compute facts about paths reaching a node or paths reachable from a node and (b) we

want to compute facts that are valid along all paths to a node or only along some paths to a

node.

48 Chapter 2. Background

int i ;
i f (b)

i = 1 ;
i = i ∗ 2 ;

b

1

i = 1

2

i = i * 2

3

true

false

(a) (b)

Figure 2.7: Simple program to demonstrate the difference between may and must analyses.

(a) Forwards versus backwards analysis

Sometimes we will want to calculate information about paths reaching a node and other times

about paths reachable from a node. For example, determining if i is initialised at 3 in Fig-

ure 2.7(b) requires looking at paths reaching it. On the other hand, determining if the value

of i assigned at 2 is ever used requires looking at paths reachable from 2. In the former, data

is propagated from the start of the program downwards. This is called a forwards analysis. In

the latter, data is propagated from the end of the program upwards. This is called a backwards

analysis.

(b) May versus must analysis

Suppose we want to know in Figure 2.7 whether variable i has been initialised before reaching

3. The start node of the program is 1. There are two paths from 1 to 3: 1→ 2→ 3 and 1→ 3.

i is initialised along the first but not the second. Therefore, we deduce i may not be initialised.

This is called a must analysis because we only assert i is initialised if all paths from 1 to 3

initialise i. In this type of analysis, data from immediate predecessors (forwards analysis) are

combined using set intersection. If instead we wish to determine what value i might have, we

would union the result of each path. This is called a may analysis. In this case, data from

immediate predecessors (forwards analysis) are combined using set union.

2.4. Program analysis 49

while (entry and e x i t s e t s change) {
for each node n {

// c a l c u l a t e new entry s e t
entry ′ (n) = { } ;
for each pr edec e s so r node p o f n

entry ′ (n) = entry ′ (n) ∪ e x i t (p) ;

// c a l c u l a t e new e x i t s e t
e x i t ′ (n) = fn (entry ′ (n)) ; } }

Figure 2.8: Simple iterative algorithm for computing the entry and exit sets of a forwards, may
analysis.

This leads to the following four types of data flow analyses: forwards, may; forwards, must;

backwards, may and backwards, must.

Entry and exit information

Data received by a node n from immediate predecessors (forwards analysis) and from immediate

successors (backwards analysis) is called entry information. The node n applies the effect of

its statement and passes the resulting set, called exit information, to its immediate successors

(predecessors). If a node has multiple predecessors (successors), like 3 in Figure 2.6(b), the

incoming data are first combined using set union or intersection depending on whether it is a

may or must analysis respectively. This combining of information from predecessors (successors)

is called taking the join (may) or taking the meet (must).

Entry and exit information for a node n are commonly referred to as the entry and exit sets of

n and are denoted as entry(n) and exit(n) respectively.

Calculating the fixed-point

To calculate the final entry and exit sets, an iterative algorithm is used. Figure 2.8 gives a

simple version of it in pseudocode for a forwards, may analysis.

Here we use apostrophe (′) to distinguish between the current and previous iterations. The

50 Chapter 2. Background

w o r k l i s t = a l l c f g nodes
while (w o r k l i s t not empty) {

n = pop next node o f f the w o r k l i s t ;
// c a l c u l a t e new entry s e t
entry ′ (n) = { } ;
for each pr edec e s so r node p o f n

entry ′ (n) = entry ′ (n) ∪ e x i t (p) ;

// c a l c u l a t e new e x i t s e t
e x i t ′ (n) = fn (entry ′ (n)) ;

i f (e x i t ′ (n) != e x i t (n))
push n′ s s u c c e s s o r s onto the w o r k l i s t ; }

Figure 2.9: Worklist algorithm for computing the entry and exit sets of a forwards, may analysis.

function fn applies the effect of n’s statement to its previous entry set. It is known as a

transfer function. This function will typically kill some incoming data and add any additional

information created by n. These are called n’s kill and gen sets respectively. One can express

fn (for a may analysis) in terms of these sets as follows:

fn(d) = (d \ killn(d)) ∪ genn(d)

The algorithm terminates when no entry and exit sets change between iterations. This is

referred to as having reached a fixed point. Most algorithms for computing the fixed point use

a worklist. This is a list of nodes whose entry and exit sets need to be recalculated because

the exit set of at least one predecessor (successor) has changed. Figure 2.9 shows a pseudocode

version of the worklist algorithm.

2.4.2 Intraprocedural versus interprocedural

So far we have only looked at data flow analysis in a single method. This is known as intrapro-

cedural data flow analysis. Lock inference also needs to determine object accesses in methods

called from atomic sections because these need to be protected too. When we consider data

flow across methods, this is called interprocedural data flow analysis.

2.4. Program analysis 51

m(x,y)

begin

end

void m(Object o1, Object o2)

n

d
f

1
n

(d)

f
2
n

(d,d')
d'

Figure 2.10: Interprocedural analysis.

The key idea is that data to a node n that performs a method call (called a caller node) flows

to the start (end) node of the callee method m and exit information from m’s end (start) node

flows back to n. Calculating the entry set is the same as in the intraprocedural case, but the

exit set is now calculated from both the entry set and the information flowing back from m.

Figure 2.10 gives a graphical description for a forwards analysis. Here, d is the intraprocedural

entry information for n and d’ is the data flowing back from m.

Interprocedural analysis introduces two new functions f 1
n(d) and f 2

n(d, d′). The function f 1
n

modifies the incoming data as required for passing to the method. This might include remov-

ing information about local variables and renaming arguments to the corresponding formal

parameter names. Function f 2
n modifies the data flowing back from the method as appropri-

ate for returning from it (i.e. rename formal parameters to arguments and remove m’s local

variables) and combines it with the intraprocedural entry information for n.

Valid paths through the program

Armed with these two functions, we could carry out the interprocedural analysis like in the

intraprocedural case. However, this turns out to be rather näıve because it allows data to flow

52 Chapter 2. Background

int m(int x) {
int r ;
i f (x == 0)

r = 1 ;
else

r = m(x−1);
return r ;

}

void main (int n) {
m(n) ;

}

2

3

4

5

int m(int x)

1

void main(int n)

m(n)

x == 0

r = 1

return r

r = m(x-1)

(a) (b)

Figure 2.11: Problem of valid paths.

along paths that do not correspond to a run of the program. Consider the example program

in Figure 2.11. At run-time, there will typically be a stack of method calls that are waiting to

be returned to. Execution always returns to the most recent one first, i.e. the one at the top

of stack. However, notice that in Figure 2.11(b) there is nothing stopping the analysis from

considering the path 1 → 2 → 4 → 2 → 3 → 5 → 1 corresponding to calling m twice but

returning only once. This is a problem because it can lead to incorrect solutions.

We can restrict consideration to valid paths by associating call stacks with data. This will

typically be a string of labels corresponding to caller nodes with the most recent one on the

right. This call string is called a calling context [SP81]. Propagated data are now a set of

functions mapping contexts to the data flow information for that context. Note that we may

have several contexts at a time because there may be several ways of reaching a method from

the start of the program. The two key things that make using contexts work are:

• Before passing data to a callee method, append the caller node n’s label to all contexts.

This indicates that it is now the most recent method call. In the case of recursion, the

2.4. Program analysis 53

calling context is either capped at a length k, or the cyclic component is removed from

the context each time it occurs.

• For all contexts passed back by a method to a caller node n, only keep those whose

rightmost label is n. This ensures that we do not pass data back along the wrong paths.

To indicate we have returned from the call, the rightmost label is removed.

An analysis that uses contexts is called context-sensitive. Recording calling contexts adds to the

memory and computation overhead of the analysis and thus is typically avoided. Furthermore,

context sensitivity often does not give a proportionate improvement in analysis precision. We

tried implementing context sensitivity in our initial analysis [CGE08], however found that it did

not scale. Khedker et al. [KK08] have found that by putting contexts into equivalence classes

based on the data flow information they map to, their overhead can be reduced. However, we

found that for our analysis it still did not scale.

Summaries

One of the widely known problems with using call strings [KK08], is that for programs with

deep call chains, the number of strings can be tremendously high. As a result, context-sensitive

analyses tend to be very expensive both in terms of time and memory usage especially when

analysing large programs. A more widely used alternative for interprocedural analysis, is the

method summary approach [SP81], which involves calculating for each method, a function that

describes how the method as a whole transforms data flow information. Data flow facts do not

have to be flowed through a target method m but instead are transformed in one step using

m’s summary function.

A summary function is computed by first defining, for each individual statement, functions

describing how they each transform data flow information and then composing them into one

large function for the entire method. Essentially, the data flow information during summary

computation are these transformer functions. Although calling contexts are not used, sum-

maries are computed bottom-up from the call graph and thus the problem of valid paths is

54 Chapter 2. Background

largely avoided.6

One of the main challenges of scalable summary computation is to find a representation that

affords fast composition and meet/join operations. In the next subsection, we describe one

such representation.

Interprocedural Distributive Environment (IDE) analyses

An important category of data flow analyses are the Interprocedural Distributive Environment

(IDE) analyses. This is a very general class containing analyses such as copy-constant propaga-

tion, linear-constant propagation, object naming analysis, 0-CFA type analysis, and all IFDS

(interprocedural, finite, distributive, subset) problems such as reaching definitions, available ex-

pressions, live variables, possibly uninitialised variables, flow-sensitive side-effects, some forms

of may-alias and must-alias analysis, and interprocedural slicing [RSX08].

In an IDE problem, data flow values are called environments. That is, they are mappings of

the form D → L where D is a finite set of symbols and L is a finite height semi-lattice. For

example, in the case of constant-propagation, D would be the set of variables in the program

and L = {>,⊥} ∪ Z. Transfer functions describe how statements transform environments and

are called environment transformers. These transformers have the special property that they

are distributive. If Env(D,L) is the set of all possible environments for a given D and L,

then distributivity means: ∀t ∈ Env(D,L) → Env(D,L) . ∀e1, e2 ∈ Env(D,L) . t(e1 u e2) =

t(e1) u t(e2).

The scalability of a summary-based analysis depends upon the representation of transfer func-

tions and how efficiently their composition and meet/join can be computed. For IDE analyses,

Sagiv et al. [SRH96] show that transformers can be represented as compact graphs, called point-

wise representations, whose composition is the transitive closure, meet is graph intersection and

join is graph union. They represent a transformer t : Env(D,L) → Env(D,L), as a balanced

6As we shall see later, the problem of invalid paths is not completely eliminated because summaries for
recursive methods (i.e. methods that are part of the same strongly connected component) must be computed
together and can therefore suffer from data being propagated around invalid paths.

2.5. Review of the lock-inference literature 55

e′ Λ x y .f

e Λ x y .f.f

Figure 2.12: Example pointwise representation.

bipartite directed graph Gt = (D1, D2, E) where D1 = D2 = D∪{Λ} and E is a set of directed

edges from nodes in D1 to nodes in D2. The additional special symbol Λ is used for introducing

new values.

Informally, these graphs describe how the exit environment e′ is derived from the entry envi-

ronment e. An edge d1
f−→ d2 in the graph means that e′(d2) is obtained from e(d1), with edge

function f : L → L describing exactly how so. In the simplest case, f = λl.l (the identity

function), so e′(d2) = e(d1). If e′(d2) is dependent on multiple e(dk), the meet or join of the

values (after applying the edge functions) is taken. Figure 2.12 shows an example pointwise

representation. In this particular case, e′(x) is a new value (shown by arrow from Λ), e′(y) is

derived from e(y) and e(x), and e′(.f) is equal to e(.f). We will revisit IDE analyses and these

pointwise representations in Chapter 3.

2.5 Review of the lock-inference literature

We now conduct a review of prior lock-inference approaches by first defining a unified framework

consisting of the dimensions along which the approaches differ. We then use this framework

to compare and discuss the prior contributions. A table with this comparison is shown in

Figure 2.13.

56 Chapter 2. Background

[M
Z

G
B

06]
[H

F
P

06]
[E

F
J
M

07]
[Z

S
Z
+

08]
[H

P
V

07]
[C

G
E

08]
[C

C
G

08]

L
an

gu
age

C
C

C
,

J
ava

O
p

en
M

P
J
ava

J
ava

C
/C

+
+

,
C

#
In

fe
rrin

g
a
cce

sse
s

D
ata

rep
resen

tation
L

valu
es

A
llo

cs
L

valu
es

?
A

llo
cs

L
valu

es
L

valu
es

A
liasin

g
Y

es
Y

es
Y

es
?

Y
es

Y
es

Y
es

A
ssign

m
en

t
N

o
N

/A
N

o
?

N
/A

R
ew

rite
R

ew
rite

U
n
b

ou
n
d
ed

accesses
N

/A
N

/A
N

/A
N

/A
N

/A
R

egex
L

im
it

len
gth

L
o
cal/sh

ared
Y

es*
Y

es
N

o
N

o
Y

es
N

o
N

o
L

ib
raries

P
re-lo

ck
in

g
N

o
N

o
N

o
O

n
e-level

d
eep

N
o

N
o

In
fe

rrin
g

lo
ck

s
Isolate

con
fl
icts

N
o

N
o

N
o

Y
es

Y
es

N
o

N
o

Isolate
con

cu
rren

cy
N

o
N

o
N

o
N

o
Y

es
N

o
N

o
D

ata
to

lo
ck

s
M

an
u
al

A
u
to

A
u
to

A
u
to

A
u
to

A
u
to

A
u
to

L
o
ck

m
in

im
isation

N
on

e
C

oalesce
IL

P
IL

P
,

H
eu

ristics
H

eu
ristics

N
on

e
N

on
e

L
o
ck

in
g

gran
u
larity

S
tatic/D

y
n
am

ic
S
tatic

S
tatic/D

y
n
am

ic
S
tatic

S
tatic/D

y
n
am

ic
M

u
ltigrain

M
u
ltigrain

A
cq

u
irin

g
/
re

le
a
sin

g
lo

ck
s

L
o
ck

in
g

p
olicy

S
trict

2P
L

B
asic

2P
L

S
trict

2P
L

B
asic

2P
L

B
asic

2P
L

E
arly

u
n
lo

ck
in

g
B

asic
2P

L
D

ead
lo

ck
S
tatic

S
tatic

S
tatic

S
tatic

S
tatic

D
y
n
am

ic
D

y
n
am

ic?
A

d
d
itio

n
a
l

fe
a
tu

re
s

T
ru

e
n
estin

g
N

o
N

o
N

o
N

o
Y

es
N

o
N

o
C

on
d
ition

variab
les

Y
es

N
o

N
o

Y
es

Y
es

Y
es

(p
reem

p
t)

N
o

E
v
a
lu

a
tio

n
L

arge
ex

am
p
les

Y
es

N
o

Y
es

Y
es

Y
es

N
o

Y
es

R
u
n
-tim

e
resu

lts
Y

es
N

o
N

o
Y

es
Y

es
N

o
Y

es

F
igu

re
2.13:

C
om

p
arison

of
p
rior

lo
ck

-in
feren

ce
ap

p
roach

es
(con

sid
ered

in
ch

ron
ological

ord
er).

2.5. Review of the lock-inference literature 57

x = new MyObj () ;
y = new MyObj () ;

T1 :
atomic {

x . f = 1 ;
}

T2 :
atomic {

x . f = 2 ;
y . f = 2 ;

}

T3 :
atomic {

y . f = 3 ;
}

apply analysis−−−−−−−−→

x = new MyObj () ;
y = new MyObj () ;

T1 :
synchronized (x) {

x . f = 1 ;
}

T2 :
synchronized (x) {

synchronized (y) {
x . f = 2 ;
y . f = 2 ;

}
}

T3 :
synchronized (y) {

y . f = 3 ;
}

(a) (b)

Figure 2.14: An example illustrating the general idea behind lock inference.

2.5.1 Basics of lock inference

The general idea behind lock inference, given a concurrent program containing atomic sections,

is to statically infer a set of locks for each atomic section to acquire and release, which ensure

that the resulting program is serialisable and does not deadlock.

To illustrate this, consider the example program in Figure 2.14(a). It consists of two shared

objects x and y, as well as three threads T1, T2 and T3 performing concurrent updates to their

f fields. To avoid interfering with each other, the threads perform their updates inside atomic

sections.

Lock inference begins by performing a compile-time analysis to determine what shared accesses

may be performed by each atomic section. It then maps these shared accesses to locks, trying

to balance the requirements of maximal concurrency, minimal locking overhead and freedom

from deadlock. Finally, these locks are inserted into the program in the form of acquire and

58 Chapter 2. Background

Node n = l i s t . head ;
while (n != null) {

n = n . next ;
}

Figure 2.15: Iterating through a dynamic data structure. It is not possible to know at compile-
time how many objects will be accessed at run-time.

release operations. In this example, the analysis infers that T1 accesses x; T2 accesses x and y;

and T3 accesses y. When mapping these accesses to locks, it will notice that T1 and T3 perform

disjoint accesses and should consequently be allowed to run in parallel by not being given the

same lock. Furthermore, T2 conflicts with both and therefore should have a (different) lock

in common with each of T1 and T3. The solution in this case, as shown in Figure 2.14(b), is

to protect each global object with its own lock and acquire the lock(s) corresponding to the

object(s) accessed by the particular atomic section in question. This allows T1 and T3 to execute

in parallel but serialises T1 and T2 as well as T2 and T3. Furthermore, deadlock is assured not

to occur with this locking policy. This example uses Java’s synchronized construct, which

acquires the unique lock protecting the argument object and releases it after exiting the block.

2.5.2 Inferring shared accesses

Lock inference proceeds by first inferring what shared accesses are performed by each atomic

section. This allows the analysis to determine potential conflicts, which it can mitigate with

a suitable set of locks. However, this is complicated by the fact that the number of objects

accessed at run-time may not be completely known at compile-time, such as when traversing

dynamic data structures like linked lists. Figure 2.15 shows an example.

Lock-inference analyses, as they are performed at compile-time, have to represent such poten-

tially infinite sets of accesses in a finite manner. How this is done depends on how the analysis

represents data accesses.

2.5. Review of the lock-inference literature 59

Data representation

There are two representations inferred by existing lock-inference work. One approach is to infer

abstract objects [HFP06, HPV07]. An abstract object is an allocation site of the form new T.

They are called abstract because many run-time objects may be created by the same allocation

site. For example:

1 Car [] c a r s = new Car [N] ;

2 for (int i =0; i<N; i++) {

3 ca r s [i] = new Car () ;

4 }

This program fragment creates an array with N elements and initialises each one with a new

Car instance, giving a total of N+1 run-time objects. Furthermore, there are two abstract

objects o1 and o3, representing the allocations at lines 1 and 3 respectively. While there is a

one-to-one mapping between the run-time and compile-time array object cars, we have the

unfortunate result that all elements in the array are mapped to the same abstract object o3.

Consequently, accesses of distinct array elements will be considered by the analysis as accesses

of the same object, resulting in a conflict being detected that does not exist. In general, an

inference algorithm using this technique determines which of these abstract objects are pointed

to by variables and fields inside the atomic section. This is known as a points-to analysis

[Pea05].

The second approach is to infer lvalues [MZGB06, CGE08, EFJM07, CCG08]. An lvalue is a

syntactic expression that refers to an object on the heap. Examples include x.f.g (in Java)

and x->f->g (in C/C++). At run-time, each lvalue can evaluate to any number of objects.

For example:

public void m(A a) {

a . f = 1 ;

}

60 Chapter 2. Background

atomic {
me. account = you . account ;
me . account . ba lance = 0 ;

}

atomic {
me. account = you . account ;
kh i l an . account . ba lance = 0 ;

}

(a) (b)

Figure 2.16: Assignments (a) and aliasing (b) affect which lvalues are inferred.

In this example, method m takes a parameter of type A and modifies its f field. With abstract

objects, we infer all allocations that could be pointed to by a, whereas the lvalues approach

infers the expression a. Note that during the lifetime of the program, a may point to an

unbounded number of objects, however, if the (possibly unique) lock used to protect each such

object is somehow reachable from the object; that is, it can be expressed as an extension of

the lvalue, such as a.lock, then we can lock each of these objects individually. This is much

finer-grained than when using abstract objects because there the maximum number of locks is

bounded by the number of allocation sites.

Assignment

Lvalues can be assigned to one or more times in an atomic section. As a result, the object

being referred to at an access may not be the same as where locks are acquired. Consider

the example in Figure 2.16(a). The object being updated in the second line is me.account.

However, you.account is assigned to me.account before the update. Hence, with respect to

the start of the atomic section, the object being updated is actually you.account.

In Cunningham et al.’s [CGE08] and Cherem et al.’s [CCG08] approaches, lvalues are rewritten

as they are propagated up the CFG while McCloskey et al.’s Autolocker [MZGB06] forces the

lock aquisition to happen after the assignment. Note that this is not a problem for approaches

that use abstract objects as the points-to analysis takes care of assignments.

2.5. Review of the lock-inference literature 61

Aliasing

Two lvalues are aliases if they refer to the same object. This complicates things further because

an assignment to an object’s field accessed through one alias may change the object being

referred to when an access involving the other one occurs. For example, in Figure 2.16(b) me

and khilan are aliases. Consequently, you.account’s balance is being updated in the second

line. Aliases are usually computed using a points-to analysis. However, if this information is

not available, all we can do is be conservative and assume that me, you and khilan could all

alias each other. This is because our lock-inference analysis must be correct for all executions.

Autolocker [MZGB06] assumes that all non-global lvalues of the same type are aliases, while

Cunningham et al. [CGE08] treat the receivers of lvalues that have the same last field as possible

aliases. For example, potential aliases in lvalues x.f.g.s.g and q.g are: x.f, x.f.g.s and q.

Finally, Hicks et al. [HFP06] use coarse locks when aliasing makes it unclear which objects are

being accessed. Emmi et al. [EFJM07] distinguish between must- and may-aliases and use this

information to impose constraints on the locks that protect them: lvalues that always alias each

other can use per-instance locks, while lvalues that may alias each other must be protected by

the same global lock.

Unbounded accesses

We revisit the linked list traversal example of Figure 2.15. As mentioned above, we cannot infer

at compile-time how many nodes will be accessed, as each iteration of the while loop will access

one node and we do not know how many times the loop will iterate. To ensure our analysis

is correct and covers all cases, we can only assume that this number is infinite. This is fine if

we are inferring abstract objects because these are finite, but the lvalues approach generates

an infinite set of lvalues. With respect to the start of the atomic section, the set of objects

accessed by the loop would be {n, n.next, n.next.next, ...}.

Consider a possible run-time heap organisation of the linked list in Figure 2.17 to understand

why. The diagram shows the node pointed to by n after each iteration. The key thing to note

62 Chapter 2. Background

n ...

After first iteration

After second iteration

Initially : Node
next

: Node : Node

...

next next

cargo

...

cargo

...

cargo

Figure 2.17: Heap-centric view of iterating through a linked list.

is that the object n points to after an iteration is n.next with respect to what it previously

pointed to. To lock these accesses before the while loop, we want all lvalues to be in terms of

what n points to there. This is the aforementioned set. But how do we represent such infinite

sets? Cherem et al. [CCG08] caps the number of field lookups in lvalues, while Cunningham et

al. [CGE08] use nondeterministic finite automata, which are equivalent to regular expressions.

For example, the set above can be written as n(.next)*.

Local/shared distinction

Accesses made inside an atomic section will typically consist of those objects that are not

accessible by other threads (known as thread-local) as well as objects that are (known as thread-

shared). Note that thread-local data do not need to be protected, as there is no contention

for them. Hence, an optimisation employed by three approaches [MZGB06, HPV07, HFP06]

is to ignore such thread-local accesses. With Autolocker [MZGB06], it is implicit because they

assign locks to objects that are annotated by the programmer, whereas with the other two

approaches [HPV07, HFP06], a static analysis is employed.

We might be able to further reduce the number of inferred accesses by noting that thread-

locality may be too strong a requirement, particularly in an implementation providing only

weak isolation, which prior approaches (and the approach in this thesis) are. Another technique

employed by Hindman et al. [HG06a] is to distinguish between accesses made inside atomics and

2.5. Review of the lock-inference literature 63

accesses made outside. This means that if some data is only accessed by one atomic, regardless

of whether it is thread-local or thread-shared, there is no need to protect it. Of course, it would

need to be checked that that atomic section itself cannot be executed by concurrent threads.

Libraries

Libraries are an important component of any real-world programming language. However, their

complexity and size make statically analysing them a real challenge both in terms of memory

requirements and time. Libraries have a number of features that make them challenging:

• Cyclomatic complexity [McC76]: libraries contain long call chains as well as large sets

of mutually recursive methods. For example, in Oracle’s JDK, we have found mutually

recursive groups with over 2000 methods. These large sets of recursive methods cause

scalability problems and lead to tremendous imprecision in analysis results.7

• Generality: libraries are designed to be general and handle all possible usage scenar-

ios. For example, the println() method must be able to print different character sets.

This requires calling into character set loading and encoding components when necessary.

However, most of the time, a default character set will be used. Static analysis has to be

conservative and assume that a different character set could be loaded and must there-

fore include these code paths. Analysing these code paths adds imprecision into analysis

results even though they are rarely executed.

• Source code: libraries are usually provided in binary form. As a result, source code

analyses will not be able to analyse them.

The first two points are what make analysing libraries most challenging and is why prior lock-

inference approaches have not analysed library methods in full. There are four main approaches

taken when tackling libraries:

7Imprecision is caused by data flow information being propagated through invalid paths (see Section 2.4.2).

64 Chapter 2. Background

• Ignore them: this is the common approach whereby library method calls are essen-

tially treated as no-ops [HFP06, EFJM07, ZSZ+08, CCG08, CGE08]. Existing library

synchronisation is relied on for safety.

• Pre-locking: in Autolocker [MZGB06], library method parameters that need to be pro-

tected are annotated $locked. The analysis then ensures that these annotated parameters

are locked before the method is called.

• Analyse up to one-level deep: Halpert et al. [HPV07] analyse library call chains up

to one-level deep (i.e. they do not analyse any of the library method’s callees) and rely

on existing library synchronisation beyond that. There are many programs where this is

sufficient, however code that has deep library call chains fails. Furthermore, if there is

no existing synchronisation present in the library then their approach does not guarantee

safety of library accesses at all. For instance, we ran their tool (r3043) on a concurrent

version of the “Hello World” program (shown in Figure 2.18), having removed existing

synchronisation from the library and observed that because they only analyse one-level

deep, they inferred empty read and write sets. Running the resulting program led to

print buffers being corrupted, causing strings to be printed out multiple times or not at

all. The output of their tool when run on this example is given in Appendix A.

• Use hand-crafted summaries: another approach not employed by prior work but

which could be is to construct hand-crafted summaries of the effects of library methods.

This is tricky because one has to ensure that all shared accesses are accounted for, which

might not always be possible due to encapsulation (e.g. a particular field accessed within

the library may not be statically resolvable at the start of the outermost atomic section).

As a result, all of the prior approaches are unsound because they may allow some library

accesses to go unprotected, leading to atomicity violations. Given that even simple programs

can involve large amounts of library code, this is a serious problem and the one that we tackle

in this thesis.

2.5. Review of the lock-inference literature 65

class ConcurrentHelloWorld {
public stat ic void main (St r ing [] a rgs) {

Thread [] threads = new Thread [8] ;
for (int i =0; i <8; i++) {

threads [i] = new Thread () {
public void run () {

for (int i = 0 ; i < numPrints ; i++) {
atomic {

System . out . p r i n t l n ("Hello World!") ;
}

}
}

}
}
for (int i =0; i <8; i++) {

threads [i] . s t a r t () ;
}
for (int i =0; i <8; i++) {

threads [i] . j o i n () ;
}

}
}

Figure 2.18: Concurrent “Hello World” example to demonstrate how Halpert et al.’s [HPV07]
treatment of the library can lead to unsoundness.

2.5.3 Inferring locks

Having inferred which shared accesses occur within atomic sections, the next step is to infer a

set of locks that ensures they do not conflict with each other. There are a number of ways in

which existing work differs here, including whether they first isolate conflicting atomic sections,

how they map accesses to locks, whether they minimise the number of locks and the chosen

locking granularity. We now look at these areas.

Isolating conflicting atomic sections

Halpert et al. [HPV07] identify that existing lock-inference techniques can be categorised as

being either top-down or bottom-up. Top-down approaches [HPV07, ZSZ+08] first identify

which atomic sections may conflict with each other and then infer a set of locks which ensures

they do not execute in parallel, while at the same time allowing those that do not conflict

to execute in parallel. Conflicting atomics are detected by finding intersecting read/write

66 Chapter 2. Background

struct entry { int k ; int v ; struct entry ∗next ; } ;

mutex t a b l e l o c k ;
struct entry ∗ t a b l e [SZ] protected by (t a b l e l o c k) ;

void put (int k , int v) {
int hashcode = . . . ;
struct entry ∗e = mal loc (. . .) ;
e−>k = k ;
e−>v = v ;
atomic {

e−>next = t a b l e [hashcode] ;
t a b l e [hashcode] = e ;

}
}

Figure 2.19: Example from Autolocker [MZGB06], demonstrating their protected by annota-
tion for associating locks with shared data.

sets. Halpert et al. [HPV07] improve upon this by also considering which atomic sections could

actually execute concurrently, using a refined May-Happen-in-Parallel analysis [HPV07, NA98].

Bottom-up approaches [MZGB06, HFP06, EFJM07, CGE08, CCG08] on the other hand, begin

from the data accesses and then derive a set of locks from these accesses. This could have the

disadvantage of leading to more lock operations and thus more locking overhead, but have the

advantage that bottom-up approaches could have more flexible locking policies.

Mapping accesses to locks

In object-oriented languages, each object is typically protected by its own lock. However, in

general, the relationship between locks and objects is flexible. Almost all approaches [HFP06,

EFJM07, ZSZ+08, HPV07, CGE08, CCG08] performs this mapping automatically, with the ex-

ception of Autolocker [MZGB06], which allows the programmer to annotate what locks protect

what objects. This has the advantage that it gives developers more control over performance

as they can control the granularity of locking. However, it adds the overhead of annotations

and also relies on the programmer using them correctly. Figure 2.19 shows an example hash

table written in C from their paper that uses the protected by annotation to associate a lock

with the hash table.

2.5. Review of the lock-inference literature 67

Locking granularity

The number of objects protected by a lock is known as the locking granularity and can have

a significant impact on the amount of concurrency permitted. For example, if the granularity

is coarse, several objects are protected by the same lock, preventing concurrent accesses from

proceeding in parallel. On the other hand, a finer granularity associates very few objects with

each lock, thus reducing the chance of contention and increasing the amount of parallelism

possible.

In approaches that use abstract objects [HFP06], a lock is associated with each allocation site.

While this makes the analysis easier (as locks can be determined at compile-time), it does not

scale well at run-time because several objects may be constructed using the same allocation

statement and will consequently share the same lock.

Lvalues allow per-instance locks [MZGB06, CGE08, CCG08, EFJM07], however, aliasing [EFJM07]

and unbounded accesses [CGE08, CCG08] often mean that coarser locks are used. A possible

solution is to use locks of differing granularities at the same time, i.e. per-instance locks where

possible and coarser locks for unbounded accesses. This is known as multi-granularity locking

and is used by Cunningham et al. [CGE08] and Cherem et al. [CCG08].

Finally, top-down approaches to lock inference [ZSZ+08, HPV07] could be considered coarse,

as a small set of locks protect a large number of accesses. However, their goal is to prevent

conflicting atomic sections from running in parallel. Bottom-up approaches in conjunction with

a suitable locking policy (see below), have the advantage that they can allow conflicting atomic

sections to overlap, thus potentially allowing more concurrency.

Minimising the number of locks

A number of approaches also employ additional techniques to reduce the number of locks

inferred. Emmi et al. [EFJM07] and Zhang et al. [ZSZ+08] use 0-1 ILP and formulate lock

inference as an optimisation problem. Zhang et al. [ZSZ+08] also use heuristics, such as “all

68 Chapter 2. Background

conflicting atomic sections must have one lock in common.” Halpert et al. [HPV07] also use

heuristics. Hicks et al. [HFP06] coalesce locks which are always acquired together.

2.5.4 Acquiring/releasing locks

Having inferred the locks to be acquired, the last step is to insert them into the program

in the form of acquire and release operations. However, where they are inserted can have a

huge impact on concurrency. Furthermore, the order in which locks are acquired can lead to

deadlock. We look at these two issues here.

Locking policy

We have already seen that the locking policy must be two-phase to ensure serialisability (see Sec-

tion 2.1.2). The basic version of acquiring all locks at the start of the outermost atomic section

and releasing them at the end is used by the approaches of Hicks et al. [HFP06], Zhang et

al. [ZSZ+08], Halpert et al. [HPV07] and Cherem et al. [CCG08]. McCloskey et al. [MZGB06]

and Emmi et al. [EFJM07] use late locking whereas Cunningham et al. [CGE08] experiment

with early unlocking.

Deadlock

If two or more threads try to acquire the same locks but in different orders, it can lead to a

state where they wait for each other called deadlock. Existing lock-inference approaches can

be divided into either dealing with deadlock at compile-time, which we shall denote a static

approach, or at run-time, which we shall call a dynamic approach.

Static approaches can avoid deadlock by ensuring locks are acquired in some globally defined

order. When the number of locks is finite, such as when using abstract objects, it is possible

to determine this ordering. This is because all locks to be acquired are known. However, when

inferring lvalues, finding an ordering may not be possible without being overly conservative. For

2.5. Review of the lock-inference literature 69

L1

L2

L3 L4 L5

Figure 2.20: An example multi-granularity locking hierarchy whereby multiple child locks L3, L4

and L5 have the same ancestors. Cherem et al. [CCG08] ensure deadlock-freedom by ensuring
that all ancestor locks are acquired but they do not give details of how they would prevent
deadlock for a hierarchy like this one.

example, McCloskey et al.’s Autolocker [MZGB06] imposes an ordering on lvalues at compile-

time by treating all lvalues with the same type as aliases. This has the side-effect that because

of other dependencies on the locking order created by assignments and the fact that it uses

late locking, Autolocker can end up rejecting programs it cannot guarantee will not deadlock.

Emmi et al. [EFJM07], who extend Autolocker, also order lvalues but use global locks when this

is not possible. Other approaches which statically order are Hicks et al. [HFP06] and Zhang

et al. [ZSZ+08]. Halpert et al. [HPV07] use static (i.e. compile-time) locks when deadlock is

possible.

Cunningham et al. [CGE08] and Cherem et al. [CCG08] differ from the aforementioned ap-

proaches in that they avoid deadlock dynamically. Cunningham et al. [CGE08] maintains a

waits-for graph. They acquire all locks at the start of the atomic section and when deadlock

occurs, the atomic section which caused it releases all previously acquired locks and tries to

acquire them again, essentially rolling back the locking phase. Cherem et al. [CCG08] on the

other hand, claim that by ensuring all ancestors in the multi-granularity lock hierarchy are

already locked then deadlock is avoided. However, they do not explain how deadlock is avoided

between multiple child locks that have the same ancestors, as shown in Figure 2.20.

70 Chapter 2. Background

x
a : A

b2 : B

c2 : C

g

f

...

b1 : B

c1 : C

g

...

T1

T2

Figure 2.21: Example illustrating that the resultant object from resolving an lvalue expression
such as x.f.g, can be incorrect if previously resolved fields are modified by concurrent threads.
Here, thread T1 resolves x.f to object b1 but thread T2 subsequently changes it to point to
b2. As a result, T1 resolves x.f.g to c1 whereas it is now c2. If T1 subsequently locks c1, it
would be the wrong lock for protecting the access of x.f.g.

A note about lock order

It was mentioned above that locks need to be acquired in some global order to avoid deadlock.

However, for approaches that infer lvalue expressions, deadlock is not the only problem that

can occur by acquiring locks in the wrong sequence.

Suppose you have an lvalue expression x.f.g. Dereferencing this involves first resolving x and

then the two successive field lookups for f and g respectively. During this resolution, any field

yet to be looked up can be modified by a concurrent thread. This is fine as those fields have

not been read yet. However, fields that have already been resolved may also change. This

may be problematic because it means that the final object resolved will be different to what

x.f.g now points to. Figure 2.21 shows a possible heap organisation for this example. There

are two threads concurrently executing: T1 that is resolving x.f.g and T2 who is assigning to

x.f. T1 successfully resolves x.f and currently holds a reference to object b1. Thread T2 then

comes along and assigns x.f the object b2. T1 performs the final field lookup for g to obtain a

reference to object c1, however, this is out of date as x.f.g now points to c2. This means that

if T1 were to subsequently lock c1 thinking that it was what x.f.g pointed to, it would have

2.5. Review of the lock-inference literature 71

acquired the wrong lock. If locks are acquired at the start of the atomic section, this could

lead to a safety violation because when T1 then actually accesses c2 by re-resolving the lvalue

expression in the atomic section, it will not be holding a lock on it and so a race condition

could occur.

To avoid the wrong locks being taken, it is necessary to acquire them in prefix order (e.g.

acquire locks in the order x, x.f and x.f.g). This prevents a field already resolved from

being modified. However, with this lock ordering constraint, it may not be possible to impose a

global ordering to prevent deadlock. Most prior work avoids this tension: Autolocker [MZGB06]

rejects programs for which a global ordering is not possible, Halpert et al. [HPV07], Emmi et

al. [EFJM07], Hicks et al. [HFP06] and Zhang et al. [ZSZ+08] use a finite set of global locks

that is entirely known at compile-time. Cunningham et al. [CGE08] on the other hand, does

acquire locks in prefix order. They detect deadlock at run-time and retry acquiring locks if it

occurs.

2.5.5 Additional features

We finally look at additional features supported by some approaches.

Truly nested atomic sections

Almost all lock-inference approaches use a flat nesting model whereby nested atomic sections

are merged with their parent, creating one large atomic section. This can negatively impact

concurrency. The exception to this is Halpert et al. [HPV07], which treat a nested atomic

section as distinct from its parent. This means that their locking policy is not two-phase,

however, there is also the additional concern that the outermost atomic section is no longer

atomic. This would be equivalent to open nesting (see Section 2.1.3) in the transactional

memory literature [NMAT+07].

72 Chapter 2. Background

class Condit ionVar iab le {
LinkedList<Thread> wa i t e r s = new LinkedList<Thread >() ;

public atomic void wait () {
Thread t = Thead . currentThread ()
wa i t e r s . add (t) ;
preempt {

LockSupport . park () ;
}

}

public atomic void n o t i f y () {
i f (! wa i t e r s . isEmpty ()) {

Thread t = wa i t e r s . removeFirst () ;
LockSupport . unpark (t) ;

}
}

public atomic void n o t i f y A l l () {
while (! wa i t e r s . isEmpty ()) {

n o t i f y () ;
}

}
}

Figure 2.22: Implementation of a condition variable using Cunningham et al.’s preempt con-
struct [CGE08].

Condition variables

Condition variables allow a thread to block to wait for some condition to be true, and to be

subsequently woken up when it is. The semantics of this inside atomic sections may be tricky

because waiting for a condition to become true might require releasing other locks to allow

shared objects to be modified. This could break atomicity. Conditional variables are supported

by Autolocker [MZGB06], Halpert et al. [HPV07] and Zhang et al. [ZSZ+08]. Cunningham

et al. [CGE08] introduce a preempt construct that splits the atomic section into two, which

they use to implement condition variables. When a preempt region is encountered, all already-

acquired locks are released, the body of the preempt region is executed and locks are then

reacquired. Figure 2.22 shows the resulting implementation of a condition variable. This

approach unfortunately breaks atomicity and would therefore require further evaluation to

determine how useful it would be.

2.6. Soot 73

int [] x = new int [1 2] ;
x [1] = 2 ;

0 : bipush 12
2 : newarray i n t
4 : astore 1
5 : aload 1
6 : iconst 1
7 : iconst 2
8 : iastore

r1 = newarray (int) [1 2] ;
r1 [1] = 2 ;

(a) (b) (c)

Figure 2.23: (a) is an example Java snippet that creates an array an initialises the second
element, (b) is the corresponding bytecode and (c) is the Jimple version. Jimple is a typed
3-address code representation used by the Soot framework.

2.6 Soot

We now briefly describe the Soot framework, which we use to implement our lock-inference

techniques. Soot [VRCG+99] is a Java optimisation framework for analysing and transforming

Java bytecode. It reads in Java source or bytecode and can transform it to one of four inter-

mediate representations, the most commonly used of which is Jimple, a typed 3-address code

representation. Figure 2.23 shows an example Java snippet, its corresponding bytecode and

Soot’s jimple representation. As you can see, Jimple is much closer to the original source and

makes writing analyses simpler in comparison to the stack-based machine of bytecode.

Soot also contains a number of useful analyses already implemented within it, such as call-graph

construction, context-sensitive and context-insensitive points-to [LH03, LH08] and use-def.

2.7 Conclusion

In this chapter, we have visited a number of background areas to give the reader a solid

grounding for the remaining technical portions of this thesis. In particular, we have looked

at the history and semantics of atomic sections, transactional memory and program analysis.

Finally, we surveyed all prior lock-inference approaches.

A significant universal weak-spot is the handling of libraries. Libraries are an important com-

ponent of any real-world language and if lock inference is to be a serious implementation of

74 Chapter 2. Background

atomic sections, it is necessary for techniques to be able to scale to them. Furthermore, lock

inference has the advantage that it can support irreversible operations such as I/O and system

calls. However, as shown by the “Hello World” program, these irreversible operations use large

portions of the library and so again lock inference needs to be able to support them.

This is not an easy task because libraries make static analysis difficult due to their cyclomatic

complexity and generality. They require the developing of special techniques, which is the main

contribution of this thesis: a set of analyses that enable lock inference for general Java programs

making arbitrary use of the library. In particular, ours is the first approach that is able to fully

analyse library call chains and thus infer a sound set of locks for an atomic section. In addition

to this, we also apply a number of novel techniques to reduce the number of locks inferred such

as finding instance-local objects.

We begin by introducing our basic analysis for inferring object accesses.

Chapter 3

Scalable lock inference

Programming languages typically come with a rich set of libraries that provide common func-

tionality, such as maintaining a hash table or performing I/O. They are usually large and

written in a general manner. This makes static analysis extremely difficult [RSX08], as an

analysis, to be correct, must consider all possible code paths, even if a large proportion of

them are rarely executed. This leads to long analysis times and lots of imprecision in analysis

results. An analysis may not even be able to complete due to insufficient memory. This is a

significant problem for lock-inference approaches because most real programs make extensive

use of libraries. Although long analysis times is not that problematic, as the results would only

be computed once, actually being able to analyse the library and reducing the imprecision that

the library introduces are important problems. Furthermore, one of the major advantages of

lock inference is that it allows irreversible operations such as system calls and I/O. However,

from the “Hello World” example in Section 1.6, we have seen that these operations rely on large

parts of the library. This again reiterates the need for a scalable lock-inference implementation

to be able to handle libraries.

Due to the complexity that libraries present, prior work has either ignored them or largely

avoided them by either annotating which locks to take or only analysing library call chains

up to one-level deep. The main contribution of this thesis is a set of lock-inference techniques

that can scale to large Java libraries. In this chapter, we describe our overall approach to lock

75

76 Chapter 3. Scalable lock inference

Bytecode
annotated

with
atomic

Infer
accesses

Infer
locks

Insert
code

Bytecode
with locks

Figure 3.1: Overview of our lock-inference analysis.

inference and our basic analysis for inferring which objects are accessed inside atomic sections

and mapping these accesses to a suitable set of locks. In the next two chapters we will describe

optimisations we employ to reduce the space and time requirements of our analysis as well as

analyses to reduce the number of locks inferred.

3.1 General approach

Our general approach is to use the Soot framework [VRCG+99] to analyse Java bytecode

annotated with atomic sections and replace these annotations with suitable locks. Our analysis

ensures weak isolation (see Section 2.1.1) and consists of three stages, which are shown in

Figure 3.1.

First, we find all outermost atomic sections reachable from the application’s main method.

We treat all synchronized blocks and synchronized methods as atomic sections. While a

synchronized block or method only locks one object, and thus does not guarantee atomic

execution of the entire code region, it has been found that programmers mostly intend atom-

icity when they use synchronized blocks [FQ03b]. Moreover, in all the programs we have

looked at, we have not encountered a situation where treating synchronized to mean “execute

atomically” created a problem. However, in general, this may not work for programs that use

volatile [GJSB05] variables to communicate between threads (without synchronisation), as

in this case, the program may rely on races for progress [BLM05]. The programs we looked at

did not exhibit this behaviour.

We then perform a data flow analysis to infer what objects are accessed in each of these atomic

sections. Nested atomics are flattened and merged with the outermost one. We compute

summaries for each method, which describe the accesses performed by it and all transitively

3.1. General approach 77

called methods. The result of the analysis is a graph at each program point p, describing objects

accessed between p and the end of the atomic section.

The graph computed at the start of the atomic section describes all objects accessed in it, which

we convert to locks. Where possible, we infer instance locks, however, for those portions of the

graph that describe a statically unbounded set of accesses (e.g. due to a linked-list traversal), we

infer locks on the types of these objects. We use multi-granularity locking [GLP75] to support

both kinds of locks simultaneously: a type lock can be acquired if none of the locks on its

instances are currently acquired and vice-versa.

Finally, we instrument the program with the inferred set of locks, such that they are acquired

upon entry to the atomic section and released upon exit. Locks are only acquired when entering

an outermost atomic section.1 Acquiring all locks together at the start allows us to avoid

deadlock at run-time. We give details of how we do this deadlock avoidance in Section 3.4.

Figure 3.2(a) shows an example atomic method and Figure 3.2(b) shows the lock operations

that would be instrumented by our analysis. The example consists of two Printers and a

Scheduler, which allocates a given Job to the next available Printer (each of which can only

handle one Job at a time). Statically, we cannot be sure which conditional branch will be

executed, so we must acquire a write lock on both Printers.

3.1.1 Java features not handled by our analysis

Our approach assumes that all bytecode is available at the time of analysis (i.e. closed world)

and is also the assumption made by prior approaches. This means that we do not handle

reflection, dynamic class loading or native methods. In the case of native method calls, we

assume all effects (i.e. read and write) on the receiver and parameter objects. It might be

possible to deal with reflection and dynamic class loading in a limited way by generating run-

time traces of reflective behaviour and then using these traces during our analysis [BSS+11]

1The set of locks inferred for an atomic section will include all locks of any nested atomic sections. In
our implementation, we maintain a thread-local nesting count to determine the current atomic nesting level
(incremented on entering an atomic section and decremented on leaving it) and only acquire locks when this
nesting counter is 0.

78 Chapter 3. Scalable lock inference

class Scheduler {
Pr in t e r p1 , p2 ;

atomic boolean schedu le (Job j) {
i f (p1 . job == null) {

p1 . job = j ;
}
else i f (p2 . job == null) {

p2 . job = j ;
}

}
}

class Scheduler {
Pr in t e r p1 , p2 ;

boolean schedu le (Job j) {
lockRead (this)
lockWrite (p1) ;
lockWrite (p2) ;
i f (p1 . job == null) {

p1 . job = j ;
}
else i f (p2 . job == null) {

p2 . job = j ;
}
unlockWrite (p2) ;
unlockWrite (p1) ;
unlockRead (this)

}
}

(a) (b)

Figure 3.2: A simple example of how our analysis would transform an atomic section. Here, a
Scheduler has two Printers. As we do not know at compile-time which Printer object’s job
field will be written to, we have to conservatively assume both could and therefore infer write
locks for both Printers. (a) is the original version and (b) is our transformed version.

but we do not pursue it in this thesis.

We also do not handle static initialisers, because they introduce much imprecision into analysis

results given that they could run at any point in the program. Static initialisers can be dealt

with by being forced to run before any threads have been spawned and any atomic sections

have been executed. However, we do not pursue static initialisers in this thesis.

Note that we do handle dynamic dispatch, by constructing a call graph using points-to infor-

mation, which we now describe.

3.1.2 Call-graph construction

We use Soot’s built-in points-to analysis and call-graph constructor [LH03]. Both of these

are context-insensitive, meaning that our call graphs may be less precise and may contain

many more callees for an instance method call x.m() than if we were using context-sensitive

versions. As a result, we may infer more locks overall. We try to keep this imprecision down

3.2. Inferring object accesses 79

to a minimum by using Soot’s points-to analysis when building a call graph, so that call edges

are generated based on the possible run-time types of x identified from allocation sites. This is

in contrast to using class hierarchy analysis [DGC95] for call-graph construction, which would

assume x could be of any type in the class hierarchy of x’s static type and thus that the call

x.m() could resolve to any implementation of method m in this hierarchy. Using points-to

information means that a call edge would only exist in the call graph to implementations of

method m that are defined in, or inherited by, x’s possible run-time types, which should result

in much fewer call edges.

The rest of this chapter is organised as follows: in Section 3.2, we present our object-access in-

ference analysis that can scale up to Java programs that use the class library and in Section 3.3,

we discuss how to infer locks from the results of this analysis.

3.2 Inferring object accesses

We infer syntactic expressions of the form x.f1...fn, whereby x is a variable and f1...fn

are field and array accesses. These expressions are also known as lvalues [CA04, CGE08] that

evaluate at run-time to object references. Each object is protected by its own lock, so an

lvalue expression can also be used to obtain this unique lock (as in Java). However, the set

of lvalues accessed by an atomic section may be unbounded. For example, when traversing a

linked list, at compile-time we cannot know in general how may times the loop will be iterated

and can only assume it may be infinite. We overcame this in previous work [CGE08] by

representing sets of lvalues as nondeterministic finite automata (NFA). NFAs are equivalent to

regular expressions and give us a precise, finite representation. Details of this technique can be

found in Cunningham’s PhD thesis [Cun10] and our paper [CGE08].

In Figure 3.3, we modify the printer example of Figure 3.2 so that printers instead have a queue

of pending jobs. The Printer class also has a method calcAvgWaitTime() that returns the

average waiting time across all completed print jobs. This method is atomic because the done

list and associated doneCount field should not be modified during the calculation. The set of

80 Chapter 3. Scalable lock inference

1 class Pr in t e r {
2 LinkedList<Job> pending , done ;
3 int pendingCount , doneCount ;
4

5 atomic f loat calcAvgWaitTime () {
6 int tota lWait = 0 ;
7 LinkedList<Job> j obs = this . done ;
8 Node<Job> n = jobs . head ;
9 while (n != null) {

10 Job j = n . data ;
11 tota lWait += j . e l apsed ;
12 n = n . next ;
13 }
14 return (f loat) tota lWait / this . doneCount ;
15 }
16 }

Figure 3.3: Printers with queues.

this
this.done
this.done.head
this.done.head.data
this.done.head.next
this.done.head.next.data
...

0 7

14

8 10 11

12

this

this

.done .head

.head .next

.next

.data

(a) Lvalues set (b) Nondeterministic finite automaton (NFA)

Figure 3.4: Inferred nondeterministic finite automaton (NFA) from the atomic calcAvgWait-

Time method in Figure 3.3.

3.2. Inferring object accesses 81

lvalues accessed and the equivalent NFA that our analysis infers are shown in Figure 3.4.

A widely-used technique for interprocedural data flow analysis, is the functional approach [SP81].

Data flow values are translated in one step at a call to a method m, using m’s summary function,

which cumulatively describes how m transforms data flow information. Summary functions are

computed by composing the individual transfer functions for each of m’s statements. During

this computation, the data flow information consists of these transfer functions. Summaries

only need to be computed once, thus when a summary for a library method is produced, it can

be stored for reuse later when analysing client programs, eliminating the need to reanalyse the

library. However, to be able to compute summaries scalably, it is essential to have a compact

representation for transfer functions with fast composition and meet/join operations.

We formulate our analysis as an Interprocedural Distributive Environment (IDE) [RSX08] anal-

ysis. As described in Section 2.4.2, data flow values in an IDE analysis are mappings of type

D → L called environments. D is a finite set of symbols and L is a finite height join semi-lattice.2

Transfer functions describe how statements transform environments and are called environment

transformers (called transformers for short). If Env(D,L) is the set of all environments for

a given D and L, then transformers have type Env(D,L) → Env(D,L). Furthermore, trans-

formers have the special property that they are distributive. That is, ∀t ∈ Env(D,L) →

Env(D,L) . ∀e1, e2 ∈ Env(D,L) . t(e1 u e2) = t(e1) u t(e2).

The advantage of this framework is that a compact representation of transfer functions exists

that allows fast composition and join3 during summary computation. In particular, Sagiv et

al. [SRH96] represent transformers as bipartite directed graphs, allowing the composition to be

computed by taking the transitive closure and the join by graph union. Rountev et al. [RSX08]

have also shown that IDE analyses with this representation can scale well when using large

Java libraries.

In the next section, we begin formulating our IDE analysis by first defining our environments.

2L would need to be a finite height meet semi-lattice if the meet operation was being used. However, our
analysis uses join and therefore we require a finite height join semi-lattice.

3Our analysis uses join.

82 Chapter 3. Scalable lock inference

0

7

14

8

this

this

.done

this 7→ {(0, 7), (0, 14)}
.done 7→ {(7, 8)}

(a) (b)

Figure 3.5: (a) Portion of the automaton from Figure 3.4 and its environment representation
(b).

3.2.1 From sets to environments

In our previous approach [CGE08], we represented NFAs as sets of edges. Hence, the first

step is to represent them as environments instead; that is, mappings from some finite set of

symbols D to elements of a finite height join semi-lattice L. To describe this process, we use

the definition of an automaton as a five-tuple: (Q,Σ, δ, q0, F), where Q is the set of states,

which for our analysis are the set of all program statements; Σ is the set of transition labels

consisting of local variables, fields, classes (for static accesses) and [*] (for array accesses); δ

is the transition function; q0 is the start state and F is the set of accepting states (i.e. for our

analysis Q \ {q0}). Our IDE analysis represents an automaton as a mapping from transition

labels l ∈ Σ to their corresponding transitions (represented as pairs of the form (q1, q2)). Let

StatePairs = Q × Q. Thus, we choose D = Σ and L = P(StatePairs). Note, L is finite

because Q is finite [CGE08]. Figure 3.5 shows a portion of the automaton of Figure 3.4 and its

corresponding representation as an environment.

3.2.2 Environment transformers

Environment transformers describe how program statements transform data flow information,

which we now define for our analysis.

We acquire all locks at the start of the atomic section. This allows us to test for deadlock at

run-time but is challenging because it means that the object referred to by a lvalue, such as x,

may differ between the point where x is dereferenced and the point where locks are acquired

3.2. Inferring object accesses 83

t[x = y]n = λe.e[y 7→ e(y) ∪ e(x)][x 7→ ∅]
t[x = null]n = λe.e[x 7→ ∅]
t[x = new]n = λe.e[x 7→ ∅]
t[x = y.f]n = λe.e[y 7→ e(y) ∪ {(0, n)}]

[.f 7→ e(.f) ∪ {(n, n′)|(0, n′) ∈ e(x)}]
[x 7→ ∅]

t[x.f = y]n = λe.e[x 7→ e(x) ∪ {(0, n)}]
[y 7→ e(y) ∪ {(0, n′′)|(n′, n′′) ∈ e(.f)}]

t[x.f = null]n = λe.e[x 7→ e(x) ∪ {(0, n)}]
t[x.f = new]n = λe.e[x 7→ e(x) ∪ {(0, n)}]
t[x = y[*]]n = λe.e[y 7→ e(y) ∪ {(0, n)}]

[[*] 7→ e([*]) ∪ {(n, n′)|(0, n′) ∈ e(x)}]
[x 7→ ∅]

t[x[*] = y]n = λe.e[x 7→ e(x) ∪ {(0, n)}]
[y 7→ e(y) ∪ {(0, n′′)|(n′, n′′) ∈ e([*])}]

t[x[*] = null]n = λe.e[x 7→ e(x) ∪ {(0, n)}]
t[x[*] = new]n = λe.e[x 7→ e(x) ∪ {(0, n)}]

Figure 3.6: Environment transformers for object-access inference.

(i.e. at the beginning of the atomic section), due to assignments that occur in-between (see

Section 2.5.2 for more details). Our transformers translate lvalues accordingly to preserve

the set of objects that are accessed, albeit potentially introducing new accesses due to the

conservatism of our alias analysis.

Figure 3.6 contains our transformers, which we now describe in turn. We use Soot’s three-

address Jimple representation (see Section 2.6). Each control flow graph (CFG) node is labelled

with a unique identifier n. We represent a CFG node in text with the square-bracket notation

[...]n.

[x = y]n The object referenced by x after this assignment is actually that pointed-to by y

before the assignment. Hence, to preserve object accesses performed lower down via lvalues

beginning with x, they must be rewritten to begin with y instead. For example, in atomic

{ x = y; x.f = 1; }, the access of x in x.f requires locking y at the start of the atomic

section. We achieve this by modifying the incoming environment e by replacing all automaton

transitions of the form 0
x−→ n′ with 0

y−→ n′. This involves copying x’s transitions to y’s set:

y 7→ e(y) ∪ e(x), and deleting x’s transitions: x 7→ ∅.

84 Chapter 3. Scalable lock inference

[x = new]n and [x = null]n In these two cases, accesses of x below the assignment will either

be local to the atomic section (new) or generate a NullPointerException (null). No locks

need to be acquired, so we delete lvalues beginning with x by removing all 0
x−→ n′ transitions:

x 7→ ∅.

[x = y.f]n The transformer for this statement performs two tasks. Firstly, it records that

the object pointed-to by y is being accessed, by adding the transition 0
y−→ n to the incoming

environment e: y 7→ e(y) ∪ {(0, n)}. Secondly, it preserves object accesses performed via

lvalues prefixed with the variable x by rewriting them to start with y.f instead. For example,

in atomic { x = y.f; x.g = 1; }, to protect the object access x in x.g at the start of the

atomic section, we require locking y.f. This is achieved by replacing all transitions of the

form 0
x−→ n′ with the pair of transitions 0

y−→ n (already generated above) and n
.f−→ n′:

.f 7→ e(.f) ∪ {(n, n′)|(0, n′) ∈ e(x)}. Finally, we delete x’s transitions: x 7→ ∅.

[x.f = y]n This statement accesses the object x and modifies its f field to point to object y.

Our transformer records the access by adding it to x’s transition set in the incoming environment

e: x 7→ e(x) ∪ {(0, n)}.

With previous statements, we preserve object accesses made below by simply rewriting lvalues

beginning with the left-hand side to instead be prefixed with the right-hand side. This particular

assignment is not as straightforward because it could, in addition to lvalues starting with x.f,

also affect lvalues prefixed with z.f for all variables z that alias x. For example, in atomic {

x.f = y; z.f.g = 1; }, to protect the access z.f in z.f.g, there are two possibilities. (i)

x and z are aliases: the atomic section is then the same as atomic { z.f = y; z.f.g = 1;

}, so the object referred by z.f after the assignment is actually y before the assignment, so

we lock y. (ii) x and z are not aliases: the object z is not modified by the first assignment,

therefore the lvalue z.f is not affected so we lock z.f (and not y).

Our analysis uses type information to determine whether two lvalues may alias each other. In

particular, the assignment x.f = y affects the lvalue z.f if the classes that define the field

3.2. Inferring object accesses 85

f (being accessed in both x.f and z.f, determined statically in Java) are the same. If they

are, we add the lvalue y, otherwise we conclude that z.f will definitely not be affected and do

nothing. Note, even if x and z may be aliases, the original lvalue z.f is not deleted in case x

and z are not aliases.

In general, the affected lvalue may be of the form v.f.f where f is a sequence of zero or

more field and/or array lookups that could include f. Hence, our transformer adds a transition

0
y−→ n′′ for each n′

.f−→ n′′ transition whereby field f on the transition is defined in the same class

as field f in x.f: y 7→ e(y) ∪ {(0, n′′)|(n′, n′′) ∈ e(.f)}. Having points-to information would

reduce the number of 0
y−→ n′′ transitions but may complicate the composition of transformers.

For this reason, we do not use points-to information here.

[x.f = new]n and [x.f = null]n As type information only tells us if two lvalues may alias,

we can never assert that they definitely must alias. Hence, we cannot assume that accesses of

the form z.f will be local (new) or generate a NullPointerException (null). However, we

can assume this for lvalues prefixed with x.f, as we know x.f aliases itself. In this latter case,

we would not acquire the lock for x.f. To cover both scenarios where we can and cannot delete

the lvalue, the transformer performs no transformation. Note that x is being dereferenced so

we record this: x 7→ e(x) ∪ {(0, n)}.

[x = y[*]]n The transformer for this statement is similar to that for x = y.f. We record

the access of the array object y in the incoming environment e: y 7→ e(y) ∪ {(0, n)}. However,

when translating, we do not distinguish between different array locations, representing them

all using [*]. This can be read as “somewhere in the array.” Our transformer preserves

object accesses by translating all lvalues that begin with x to instead start with y[*]. That

is, we replace each transition 0
x−→ n′ with the pair 0

y−→ n (generated above) and n
[*]−−→ n′:

[*] 7→ e([*])∪ {(n, n′)|(0, n′) ∈ e(x)}. At run-time, locking y[*] involves locking all elements

of the array y.

86 Chapter 3. Scalable lock inference

[x[*] = y]n We assume all arrays are aliased,4 hence this assignment could affect all lvalues

that end in [*]. When translating such lvalues, we cannot be sure they refer to the same array

location being assigned to. Even in the case of x[*], although we are certain the same array

is being modified, the indices may differ. Consequently, our transformer does not delete any

lvalues (like for x.f = y) but adds a transition 0
y−→ n′ for each transition of the form n′′

[*]−−→ n′:

y 7→ e(y) ∪ {(0, n′)|(n′′, n′) ∈ e([*])}.

3.2.3 Graph representation of transformers

The scalability of a summary-based analysis depends upon the representation of transfer func-

tions and how efficiently their composition and join can be computed. For IDE Analyses, Sagiv

et al. [SRH96] show that transformers can be represented as compact bipartite directed graphs,

called pointwise representations, whose composition is the transitive closure and join is graph

union.

Informally, these graphs describe how the exit environment e′ is derived from the entry envi-

ronment e. An edge d1
f−→ d2 in the graph means that e′(d2) is obtained from e(d1), with edge

function f : L → L describing exactly how so. In the simplest case, f = λl.l (the identity

function), so e′(d2) = e(d1). If e′(d2) is dependent on multiple e(dk), the join of the values

(after applying the edge functions) is taken. New values (not derived from e) are introduced

by transformer edges from the special symbol Λ.

Figure 3.7 shows the pointwise representations for t[x = y]n , t[x = y.f]n and t[x.f = y]n from Fig-

ure 3.6 (we assume here that D = {x, y, .f}). The arrows are directed from bottom to top

because our analysis is backwards (see Section 2.4.1). Our analysis has five edge functions:

1. λl.{(n′, n′′)} for introducing a new automaton transition n′
d−→ n′′. For example, the

statement [x = y.f]n of Figure 3.7(b) accesses object y and therefore e′(y) must contain

the new pair (0, n). This is represented by the edge Λ
λl.{(0,n)}−−−−−→ y.

4This includes arrays with different element types.

3.2. Inferring object accesses 87

Λ x y .f

Λ x y .f

λl.l

λl
.∅

λ
l.
l

λl.l

λl.l

(a) t[x = y]n

Λ x y .f

Λ x y .f

λl.l

λl
.∅

λl
.{(

0,
n)
}

lo
ad
n λl.l

λl.l

(b) t[x = y.f]n

Λ x y .f

Λ x y .f

λl.l
λ
l.
{(

0,
n
)}

λl.l

λl.l store
n

λl.l

(c) t[x.f = y]n

Figure 3.7: Pointwise representations for the key transformers in Figure 3.6.

2. λl.∅ for killing transitions. For example, in Figure 3.7(a), e′(x) = ∅ corresponds to the

edge Λ
λl.∅−−→ x.

3. λl.l for copying transitions. The edges y
λl.l−−→ y and x

λl.l−−→ y in Figure 3.7(a) collectively

give that e′(y) = e(y) ∪ e(x) (as defined in Figure 3.6).

4. loadn = λl.{(n, n′)|(n′′, n′) ∈ l} for preserving object accesses across statements of the

form [x = y.f]n and [x = y[*]]n.

5. storen = λl.{(0, n′)|(n′′, n′) ∈ l} for preserving object accesses across statements of the

form [x.f = y]n and [x[*] = y]n.

3.2.4 Transformer composition

To illustrate how transformer composition works, we extend our Printer example from Fig-

ure 3.3 with another atomic method enqueue in Figure 3.8, that adds a given Document d to the

printer’s queue of pending jobs. This method needs to be atomic because concurrent threads

should not be allowed to modify the printer’s queue or the Document d while it is executing.

88 Chapter 3. Scalable lock inference

atomic void enqueue (Document d) {
Job j = new Job (d) ;
j . e l apsed = 0 ;
d . queued = true ;
// add j to queue o f pending j o b s

}

Figure 3.8: Example from Figure 3.3 extended with an enqueue method.

...

j = new Job(d)

j.elapsed = 0

d.queued = true

...

1

2

3

Λ j d

Λ j d

Λ j d

Λ j d

λl
.{(

0,
3)
}

λ
l.
{(

0,
2)
}

λl
.∅

Λ j d

Λ j d

Λ j d

λ
l.
{(

0,
2)
}

λ
l.
{(

0,
3)
}

λ
l.
∅

Λ j d

Λ j d

λ
l.
{(

0,
3)
}

λ
l.
∅

(a) CFG (b) Initially (c) One step (d) Two steps

Figure 3.9: (a) CFG for enqueue. (b)-(d) show the successive results for composing transformers
(performed bottom up).

Figure 3.9(a) gives the CFG for enqueue. Figure 3.9(b) shows each CFG node n’s transformer

placed directly to n’s right. Edges of the form d
λl.l−−→ d are called trivial edges. To simplify

graphs, we draw them with a dashed line and omit the identity edge function.

Composing transformers is performed bottom up (because this is a backwards analysis), there-

fore we first compose t[d.queued = true]3 together with t[j.elapsed = 0]2 , the result of which is shown

in Figure 3.9(c). Transformer composition is computed by taking the transitive closure of edges

(and composing edge functions).

Figure 3.9(d) shows the result of composing the transformer computed in Figure 3.9(c) with

t[j = new Job(d)]1 . This resulting transformer describes the cumulative effects on data flow infor-

3.2. Inferring object accesses 89

Λ j d

Λ j d

λ
l.
∅

Λ j d

Λ j d

λ
l.
∅

Λ ∅ j d

Λ ∅ j d

(a) All edges (b) Sparse (c) Refined sparse

Figure 3.10: Determining whether a trivial edge exists in our sparse transformer is costly,
hence we refine the representation. (a) contains the original transformer for t[j = new Job(d)]1

of Figure 3.9(b), with all edges represented explicitly, (b) is the sparse version and (c) is the
refined sparse version. The refinements we make are that (1) we introduce the symbol ∅ and
subsequently represent killing a mapping by the edge di → ∅ and (2) we implicitly encode
killing in an edge. That is, the edge di → dj also means that e′(di) = ∅. These two refinements
mean that a trivial edge di → di exists iff di has no outgoing edges.

mation of all three statements. It has two non-trivial transitive edges Λ
λl.(0,3)−−−−→ d (computed

by composing Λ
λl.(0,3)−−−−→ d with the trivial edge d

λl.l−−→ d) and Λ
λl.∅−−→ j (obtained by composing

Λ
λl.l−−→ Λ and Λ

λl.∅−−→ j, where λl.∅ = λl.∅ ◦ λl.l).

3.2.5 Sparsity

An important optimisation to reduce the size of a transformer and simultaneously the time

taken to perform compositions and joins, is to keep the graphs as sparse as possible. We

achieve this by not explicitly representing trivial edges (i.e. of the form d
λl.l−−→ d). Despite

not explicitly representing these edges, it is still necessary to detect that they exist when

performing transformer operations. However, it turns out that this can be costly for our

analysis, potentially overriding the benefits obtained from sparsely representing them. To

demonstrate this, Figure 3.10(b) shows the sparse graph for t[j = new Job(d)]1 of Figure 3.9(b)

(shown again in Figure 3.10(a)). Both d and j have no outgoing edges but while the implicit

edge d
λl.l−−→ d exists, the same is not true for j

λl.l−−→ j. This is because j is killed in the

exit environment, as represented by the edge Λ
λl.∅−−→ j. Hence, to determine if a trivial edge

di
λl.l−−→ di exists, the transitive closure now requires checking whether the edge Λ

λl.∅−−→ di exists.

This has to be done for all dk, which will slow down transformer composition tremendously

when transformers are large. So, although we have achieved a space reduction, we lose out in

90 Chapter 3. Scalable lock inference

Λ ∅ x y .f

Λ ∅ x y .f

λ
l.
l

(a) t[x = y]n

Λ ∅ x y .f

Λ ∅ x y .f

λl.
{(0
, n

)}

lo
ad
n

(b) t[x = y.f]n

Λ ∅ x y .f

Λ ∅ x y .f

λl
.{(

0,
n)
}

store
n

λl.l

(c) t[x.f = y]n

Figure 3.11: Refined sparse pointwise representations for Figure 3.7.

the time dimension.

To overcome this problem, we firstly introduce a new special symbol ∅ to the bipartite graph.

Killing the value for symbol di in the exit environment is then represented with the edge

di → ∅. Secondly, we observe that a large majority of our transformers perform kills (i.e.

replace automaton transitions), hence we implicitly encode killing within transformer edges.

That is, an edge d1
f−→ d2 now additionally has the meaning e′(d1) = ∅. This latter refinement

removes the need for kill edges when rewriting lvalues (e.g. [x = y]n), leading to sparser graphs.

These two refinements combined yield the result that an implicit edge di → di exists iff di has

no outgoing transitions in a transformer. Figure 3.10(c) shows the refined graph. Symbols Λ, ∅

and d have no outgoing edges and so each have trivial edges. Conversely, j has an outgoing edge,

therefore has no trivial edge. Figure 3.11 shows the refined sparse pointwise representations of

Figure 3.7. In the case of Figure 3.11(c), as we do not kill field f in the exit environment, we

must add an explicit edge .f
λl.l−−→ .f. However, statements of the form [x = ...]n are more

common, hence the overall effect is that our refined transformers contain significantly fewer

edges than the original version of Sagiv et al. [SRH96].

3.2. Inferring object accesses 91

Λ ∅ x y

Λ ∅ x y

Λ ∅ x y

Λ ∅ x y

λl.l

(a) Sparse transformers to join

Λ ∅ x y

Λ ∅ x y

λl.l

Λ ∅ x y

Λ ∅ x y

λl.l λl.l

(b) Graph union (c) Correct result

Figure 3.12: Computing the join when implicit edges are present.

Transformer join When all edges are explicitly represented, the join of transformers is graph

union. However, when edges are implicitly represented, this is not the case and extra care is

needed. Figure 3.12(a) gives two example transformers whose join is to be computed. The

first is the identity transformer that preserves all values from the entry environment to the

exit environment. The second transformer, however, copies x’s value across to y before killing

x’s value. Hence, the combined transformer should both preserve x’s value and also copy it

to y. Figure 3.12(b) shows the resulting transformer after union, which is not the desired

result. This is because graph union is oblivious to the fact that x has an implicit edge in the

first transformer. To resolve this, our join operation makes a trivial edge explicit if at least

one other transformer does not also implicitly have it. However, if none of the transformers

have the trivial edge, then it is not generated in the merged result. The correct result for this

example is shown in Figure 3.12(c).

3.2.6 Computing method summaries

Code within atomic sections may invoke methods. To infer object accesses across method

boundaries in a scalable way, we compute a summary for each method m that describes its

92 Chapter 3. Scalable lock inference

object accesses as well as how it cumulatively transforms data flow information. This allows

m’s effects to be inlined at caller nodes by composing with its summary transformer. In this

section, we describe how summaries are derived from the transformers computed by our analysis

and also how interprocedural propagation works.

We assume each method m has a unique entry statement Nm and exit statement Xm. Further-

more, return values are represented using the ghost variable $r, i.e. [return x]n is treated as

[$r = x]n ([return]n is considered a no-op). Each CFG node n in m has a local transformer tn,

which describes how n transforms environments (e.g. t[x = y]n). Our analysis also computes an

aggregate transformer tn,Xm at n that summarises the transformation on environments along

all execution paths between n and Xm inclusive. It is initially approximated as being the iden-

tity transformer5 and progressively refined by first taking the join of all aggregate transformers

computed at successor nodes:
⊔
{ts,Xm | s ∈ successors(n)}, and composing this result with tn,

i.e. tn,Xm = tn◦
⊔
{ts,Xm | s ∈ successors(n)}. Consequently, the aggregate transformer tNm,Xm

computed at the entry statement Nm, describes the effects for all execution paths through the

method m. However, this transformer will contain information about local variables that is

irrelevant to a calling method. Hence, we remove this method-local information to yield the

summary for method m, which we refer to as Tm.

3.2.7 Interprocedural propagation

We now describe how these summaries are used at caller nodes for interprocedural propagation.

Assume method f contains the call [x = y.m(a1, ..., ak)]
n. The local transformer for this caller

node encapsulates three steps: (i) parameter passing, (ii) execution of the callee method m

and (iii) storing the return value to result variable x. We conceptually expand n to a series of

sub-statements comprising assignments of arguments to parameters: [this = y]nthis and ∀i :

1, ..., k [pi = ai]
npi ; the method invocation [m(this,p1, ..., pk)]ninvoke ; and the assignment of

the return value [x = $r]nresult . Transformer tn is thus the composition of the local transformers

5See Section 3.2.8 for a discussion on the choice of initial value and the lattice ordering.

3.2. Inferring object accesses 93

for each of these sub-statements:

tn = tnresult
◦ tninvoke

◦ tnpk ◦ · · · ◦ tnp1 ◦ tnthis

The transformer tninvoke
is the summary of the callee m, i.e. Tm. However, due to polymorphism,

there may be several possible callees for [m(this,p1,...,pk)]ninvoke and as this is a static

analysis, we have to assume that any could be executed. We therefore take the join of all

such callee summaries: tninvoke
=
⊔
{ Tm | m ∈ callees(n) }. Note, we obtain possible-callee

information from Soot’s call graph (see Section 3.1.2).

Normally, summaries for callee methods will be computed before summaries for calling methods.

If the caller f is involved in a recursive cycle with the callee m, then this is not possible. In

this case, the summary Tm is computed iteratively together with Tf . Furthermore, the invoke

transformer tninvoke
is initially unknown6 and must therefore also be calculated iteratively.

To illustrate how propagation proceeds up the call graph, consider the example program in

Figure 3.13(a) and its corresponding call graph in Figure 3.13(b). As method d is the leaf of the

call graph, we first compute its summary Td. Methods b and c are next but as they recursively

call each other, their summaries Tb and Tc must be iteratively computed together, applying Td at

the call to d. Finally, method a’s summary is computed utilising Tb. When computing multiple

summaries together, such as Tb and Tc in this example, they are initially approximated as being

the identity transformer7 and progressively refined. During this computation, every time the

calls b() and c() are encountered, the current approximation of the respective summary is

used and by repeatedly doing so, a fixed point is eventually reached.

3.2.8 A note on lattice ordering and monotonicity

When beginning the analysis, we initially approximate all aggregate transformers tn,Xm and

method summaries Tm as being the identity transformer. Furthermore, we assume subset

6In general, some callees may be involved in a recursive cycle with the caller and some may not be, so tninvoke

would be partially known.
7See Section 3.2.8 for a discussion on the choice of initial value and the lattice ordering.

94 Chapter 3. Scalable lock inference

void a () {
b () ;

}

void b () {
i f (. . .)

return ;
else

c () ;
}

void c () {
i f (. . .)

d () ;
else

b () ;
}

void d () { . . . }

a

b c

d

(a) (b)

Figure 3.13: Example call graph containing a set of mutually recursive methods.

ordering on transformers: for computed transformers a and b, a v b holds if the edges in a are

a subset of those in b. Based on this ordering and the distributivity of our transfer functions,8

it follows that our transfer functions are monotonic: for transformers a and b, such that a v b,

it is also the case that tn ◦ a v tn ◦ b for any transfer function tn.

In all the programs we have analysed, this initial approximation and ordering has enabled us

to reach a sound fixed point. However, during the viva, the examiners raised concern about the

choice of the identity transformer as the initial value and speculated that the empty transformer

may be the correct choice of ⊥, ensuring that in all cases, the analysis terminates and that

it does so with the least fixed point. We agree with their judgement, however, for all our

experiments, our analysis did terminate and we have validated that the computed transformers

contain at least the edges in the least fixed point (but possibly more). This means that our

results are still sound but potentially an over approximation.

We believe that investigating the correct value of ⊥ for our analysis would be interesting and

8Transfer functions are applied by transformer composition, which in turn is performed by taking the tran-
sitive closure of edges in one transformer with edges in the second transformer. As there is no dependence on
other edges during each pair-wise edge composition, it follows that our transfer functions are distributive.

3.3. Inferring locks 95

0 7

14

8 10 11

12

this

this

.done .head

.head .next

.next

.data
R(this)
R(this.done)
R(this.done.head)
R(Job)
R(Node)

(a) (b)

Figure 3.14: (a) is the NFA of Figure 3.4 and (b) is the corresponding set of inferred locks.

provide a much stronger theoretical foundation to our work. We leave this as future work.

3.3 Inferring locks

After having computed a fixed point in our IDE analysis, we then map the inferred object

accesses to locks. From the transformer computed at the start of the atomic section, we extract

the NFA describing all object accesses. This NFA is constructed from all transformer edges of

the form Λ
λl.{(0,n)}−−−−−→ dk. We subsequently infer a set of locks from this automaton.

Given that we assume each object is protected by its own individual lock, these lvalue ex-

pressions can also be used to refer to this lock. However, the NFA may represent a statically

unbounded set of lvalues, which is a problem because we can only infer a finite set of locks. If

the set of lvalues is not finite, we instead lock their possible run-time types.

Our lock-inference algorithm tries its best to infer per-instance locks. Hence, for the portions

of the automaton that describe a finite set of lvalues, we infer per-instance locks and for the

remaining cyclic parts, we infer the possible run-time types of the lvalue expressions. We use

multi-granularity locking [GLP75] to be able to support both type locks and instance locks

simultaneously.

To illustrate how this process works, we revisit the automaton of Figure 3.4(b), presented again

here in Figure 3.14(a) for convenience. As a preprocessing step, our analysis first identifies all

NFA states that are part of, or reachable from, a cycle. These states are coloured light grey in

the NFA.

96 Chapter 3. Scalable lock inference

The lock-inference algorithm starts from the start state and does a depth-first traversal of

the automaton. In this example, we visit states 0, 7, 8 and 10. Upon transitioning to a

state, the currently accumulated lvalue expression is extended and a new lock is added to

the set for it. Hence, so far we have inferred the read locks: R(this), R(this.done) and

R(this.done.head).9 State 10 is part of a cyclic access and therefore, we switch to inferring

types. For each subsequent state we visit, we use points-to information to infer the possible

run-time types of the access in the CFG node that generated the state we are currently at. For

example, at state 11, we query the possible types of the access in CFG node 11 (i.e. line 11

of Figure 3.3) to obtain Job. Backtracking and continuing in this way, we infer the additional

type read locks: R(Job) and R(Node). Figure 3.14(b) gives the final set of locks inferred.

3.4 Avoiding deadlock

The locking policy that we instrument must never result in deadlock. Prior approaches have

typically resorted to imposing a compile-time ordering on locks. However, in our case this is

not possible, as we do not know which locks will be taken beforehand. Another approach is to

detect deadlock when it occurs at run-time by maintaining a waits-for graph. We are able to do

this because we acquire all locks together at the start of the outermost atomic section and so

no shared updates would have been performed if deadlock was detected. However, maintaining

a waits-for graph can be expensive, especially given that deadlock is rare. Instead, we take a

heuristic approach by ensuring that at least one of the four necessary conditions for deadlock

never occurs [SG00]. The four necessary conditions are:

1. Mutual exclusion: locks can be held by only one thread at a time.

2. No pre-emption: locks cannot be involuntarily revoked but rather have to be voluntarily

released by the holding thread (i.e. by calling unlock()).

9The read/write nature of each access is obtained by looking at the CFG node corresponding to the state
number.

3.4. Avoiding deadlock 97

boolean l ocked = fa l se ;
while (! l ocked) {

Pr in t e r o1 = this ;
i f (o1 . i l o c k . tryLock ()) {

LinkedLis t o2 = o1 . done ;
i f (o2 . i l o c k . tryLock ()) {

Node o3 = o2 . head ;
i f (o3 . i l o c k . tryLock ()) {

Class o4 = Job . class ;
i f (o4 . t l o c k . tryLock ()) {

Class o5 = Node . class ;
i f (o5 . t l o c k . tryLock ()) {

l ocked = true ;
}
else {

o4 . t l o c k . unlock () ;
o3 . i l o c k . unlock () ;
o2 . i l o c k . unlock () ;
o1 . i l o c k . unlock () ;
waitFor (o5 . t l o c k) ;

}
}
else {

o3 . i l o c k . unlock () ;
o2 . i l o c k . unlock () ;
o1 . i l o c k . unlock () ;
waitFor (o4 . t l o c k) ;

}
}
else {

o2 . i l o c k . unlock () ;
o1 . i l o c k . unlock () ;
waitFor (o3 . i l o c k) ;

}
}
else {

o1 . i l o c k . unlock () ;
waitFor (o2 . i l o c k) ;

}
}
else {

waitFor (o1 . i l o c k) ;
}

}

void waitFor (Lock l) {
l . l o ck () ;
l . unlock () ;

}

Figure 3.15: Our deadlock-free lock acquisition algorithm for the locks inferred in Fig-
ure 3.14(b).

98 Chapter 3. Scalable lock inference

3. Circular wait: several threads are involved in a wait cycle where they each wait on a

lock held by the next thread in the cycle.

4. Hold and wait: threads do not release already-acquired locks before waiting for a lock

to become available.

The first condition cannot be avoided because we need mutual exclusion when updating shared

data. The second condition also cannot be broken because revocation would require the ability

to rollback an atomic section which we cannot do. Eliminating the third condition would

require detecting when a wait cycle has been created by maintaining a waits-for graph, which is

costly. However, we can pre-empt the fourth condition by ensuring threads wait on a lock with

empty hands, that is they release any already-acquired locks before they block. Recall that

as no memory updates have been performed yet, this is safe. When the desired lock becomes

available, we can reacquire all locks from the beginning. We are essentially rolling back the

locking phase when we discover that a lock is not available but delaying reexecution until it

becomes so.

We now illustrate this algorithm through an example: Figure 3.15 shows our deadlock-free

acquisition loop for the locks inferred in Figure 3.14(b). We have extended java.lang.Object

with a field ilock that stores a reference to the object’s instance lock. Additionally, we extend

java.lang.Class with a field tlock that references the type lock for the type represented by

each instance of Class. The loop proceeds by acquiring locks one at a time. If a lock l cannot

be acquired, all previously acquired locks are released before waiting for l to become free. Once

l becomes free, the acquisition loop restarts. To avoid blocking if a lock is not available so

that we can cleanup first, we use the non-blocking tryLock method [Lea05]. This tries to

acquire the lock and if it succeeds, returns true otherwise returns false. After having released

already-acquired locks, we wait for l to become available (see the waitFor method), using the

blocking lock method. This suspends the current thread and wakes it once l is available. Once

woken, we could hold on to l and reacquire the locks we just released. However, as explained

in Section 2.5.4, locks must be acquired in prefix order. Hence, we immediately release l and

restart the loop.

3.5. Evaluation 99

void waitFor (Lock l) {
l . l o ck () ;
l . unlock () ;

Thread currentThread = Thread . currentThread () ;
currentThread . b a c k o f f I n t e r v a l ∗= 2 ;
Thread . s l e e p (currentThread . b a c k o f f I n t e r v a l) ;

}

Figure 3.16: To minimise the chances of livelock occurring during lock acquisition, we add an
exponential backoff. Each thread has a backoff interval value which is initialised to a random
value between 0ms and 10ms every time a lock is successfully acquired and multiplied by two
every time a lock is not available.

Despite avoiding deadlock, there is now a possibility of livelock, whereby two or more threads

continuously rollback their respective locking phases because they each need a lock that the

other is currently holding. We minimise the chance of this occurring by using an exponential

backoff before restarting the loop. Figure 3.16 shows our modification to the waitFor method

to achieve this. We modify java.lang.Thread to have a backoffInterval field that records

how many milliseconds the thread should wait before attempting to reacquire locks. This

backoff interval is initialised to a random value (e.g. between 0ms and 10ms) every time a lock

is successfully acquired and multiplied by two every time a lock acquisition fails.

This lock acquisition algorithm breaks the necessary “hold and wait” condition for deadlock.

However, the overhead that arises from blocking until l becomes available and for the backoff

can be costly. In Section 5.3, we implement an optimisation that instead polls l a few times

first in case it becomes available very soon after tryLock returned false.

3.5 Evaluation

We now present experimental results for our basic lock-inference approach. Our experimental

machine is called ax3. It has 32 8-core 2.67GHz Intel Xeon E7-8837 CPUs totalling 256 cores,

3TB RAM and runs SUSE Linux Enterprise Server 11. For running our analysis, we use Oracle’s

64-bit JVM version 1.6.0 26-b03 with a minimum and maximum heap size of 60GB. The library

we analyse against is GNU Classpath 0.97.2p10.

100 Chapter 3. Scalable lock inference

(a) Analysis time (b) Number of locks (c) Run-time
(secs) Instance Type (secs)

Accesses Locks Total Read Write Read Write Manual Global Ours

4452.49 1.43 4757 215 54 148 34 0.29 0.31 3.81

Figure 3.17: Analysis results for the “Hello World” program first introduced in Section 1.6.

For running the resulting instrumented programs, we use a commodity machine called liatris.

It consists of an 8-core 3.4GHz Intel Core i7-2600 CPU, 8GB RAM and runs Ubuntu 11.04.

We use a modified version of the production build of Jikes RVM [AAB+05] version 3.1.1+svn

(r16068M) for executing the programs.

We provide a simple implementation of multi-granularity locks that internally use Java’s syn-

chronized mechanism. Furthermore, we use the java.lang.ThreadLocal class to store thread-

local information, such as locks currently acquired.

We begin by giving results for “Hello World” and then demonstrate that our approach can scale

to a full library by analysing GNU Classpath. Finally, we apply our approach to real-world

workloads in the form of a set of benchmarks. We chose the benchmarks used by Halpert et

al. [HPV07, Hal08] to enable a comparison.

3.5.1 “Hello World”

In Section 1.6, we showed that although the “Hello World” program may appear to be a simple

one-liner, it requires analysing 1150 methods from the library. Previous work does not fully

analyse libraries, hence it is not clear whether existing work can handle this program. Using our

own previous work [CGE08], we found it intractable. However, with the techniques described

in this chapter we have been able to perform a full analysis of all 1150 library methods.

The running times (in seconds) for the object-access and lock-inference analyses are given in

Figure 3.17(a). The Total column gives the time it took to run the whole analysis including

Soot-related costs, such as building the call graph and performing the points-to analysis. The

number of instance read, instance write, type read and type write locks inferred are given in

Figure 3.17(b). Memory usage peaks at 50.1GB and averages 25.6GB.

3.5. Evaluation 101

Some interesting features can be extracted from this table. Firstly, although a large number

of locks are inferred, 80% of them are read locks. Furthermore, 60% are fine-grained instance

locks. However, the large number of type write locks is alarming.

To evaluate the execution time of “Hello World” instrumented with our locks, we create a

benchmark in which 8 threads execute the “Hello World” atomic section 1000 times each. The

resulting times are shown in Figure 3.17(c). The manual column gives the time for executing

with the original locking policy of the library. The global column gives times for when using a

single global lock across all atomic sections. The table shows that our approach is 13x slower

than the original locking and 12.3x slower than using a single global lock.

Although our analysis time is high and uses a large amount of memory, the key thing to note

at this stage is that this is the first time that a lock-inference technique has successfully been

able to analyse this many library methods and produce locks for a program involving I/O and

system calls. In subsequent chapters, we will describe techniques to bring both the analysis

footprint and execution times down significantly.

3.5.2 GNU Classpath

To evaluate scalability, we analyse the entire GNU Classpath 0.97.2p10 library as packaged in

Jikes RVM. It consists of 47607 non-private methods and totals about 122KLOC. We anal-

yse each of these non-private methods in turn,10 treating it as an atomic method. We reuse

summaries if they have been computed already (during the current analysis run).

The analysis takes 1 hour and 20 minutes. Memory usage peaks at 49.7GB and averages

29.3GB. Figure 3.18 gives a per-package breakdown of: (a) number of methods; (b) access-

inference and lock-inference analysis times in seconds and (c) gives the number of each type of

lock inferred.

The method which takes the longest to analyse is java.io.InputStreamReader’s constructor,

namely 3435 seconds. Upon inspection, we find that this pulls in a similar part of the library

10Private methods are analysed implicitly with non-private callers.

102 Chapter 3. Scalable lock inference

(a) Library info (b) Analysis time (c) Number of locks
(secs) Instance Type

Package Methods Accesses Locks R W R W

gnu 16882 250.270 12.272 16536 6235 7510 1310
java 13815 4021.647 106.31 30065 9940 30007 5354
javax 14088 8.804 2.209 7640 3307 0 0
org 2794 0.800 0.322 1275 401 0 0
sun 28 0.034 0.13 11 4 0 0

Total 47607 4281.556 121.243 55527 19887 37517 6655

Figure 3.18: Analysis results for GNU Classpath 0.97.2p10.

as the “Hello World” program. However, once this set of methods has been analysed, the

summaries for methods called by most other methods have already been computed and so do

not have to be recomputed. The remaining methods are analysed in a fraction of the time

(average of 18ms).

From the locks inferred (Figure 3.18(c)), it can be observed that 78% are read locks. This is

crucial, as it means that most accesses can proceed in parallel. Furthermore, although nearly

40% of all locks are types, 85% of them are read locks. This again is promising, because it

implies that coarse-grained locking would not necessarily cripple concurrency (although in the

case of “Hello World” above, we see that the type write locks do).

3.5.3 Benchmarks

We apply our techniques to a selection of benchmark programs and compare our results with

the closest known existing work of Halpert et al. [HPV07].11 The purpose of using benchmarks

is to emulate real-world workloads to get a feel for how well our approach may work in practice.

We choose all benchmarks from their paper that do not use wait/notify (our implementation

does not currently support this) and provide analysis and run-time statistics for each. We

treat all synchronized blocks and methods as if they are atomics and translate them using our

algorithm. For a fair comparison when comparing against manual, global and Halpert et al.,

11We do not use their published work [HPV07] but their later improved version [Hal08] that they kindly made
available to us. This infers sets of fine-grained locks per atomic whereas in their published version they inferred
at most one lock per atomic.

3.5. Evaluation 103

Program Threads Atomics
(i) Methods (ii) Analysis time (secs) (iii) Run-time (secs)

Client Library Halpert Ours Manual Global Halpert Ours
sync 8 2 0 0 22 331 69.14 71.22 72.69 74.61

pcmab 50 2 2 15 22 315 2.28 3.15 2.28 12.47
bank 8 8 6 7 22 327 20.89 19.50 35.69 30.88
traffic 2 24 4 63 24 340 2.56 4.22 2.65 91.42
mtrt 2 6 67 1324 29 5741 0.80 0.82 0.78 0.95

hsqldb 20 240 2107 2955 48104 ? 3.25 3.12 3.25 ?

(a)

Program
Accesses Locks Total Avg. Memory Peak Memory

(secs) (secs) (secs) (MB) (MB)
sync 0.122 0.14 331 8022 15360

pcmab 0.246 0.092 315 7903 15367
bank 0.247 0.129 327 8013 15799
traffic 1.695 0.2 340 8118 15659
mtrt 5378.79 8.596 5741 27293 51118

hsqldb ? ? ? ? ?

(b)

Figure 3.19: Analysis and run-time results comparison for a selection of benchmarks from
Halpert et al. [HPV07, Hal08]. (a) is an overview of analysis and execution times and (b) gives
a breakdown of the time taken for each part of our lock-inference analysis. The Locks column
in (b) gives the time taken to convert NFAs to locks. Our analysis runs out of memory when
analysing hsqldb, represented by ‘?’ in the table.

we replace synchronized blocks with calls to lock() and unlock() on our locks instead (we

maintain the original locking policy).

Comparison with Halpert et al.

An important difference between our approaches is that we analyse library methods in full

whereas Halpert et al. only consider accesses up to one-level deep in library call chains and

rely on existing library synchronisation beyond that. Their approach can thus be unsound (see

Section 2.5.2). In Figure 3.19(a)(i), we list the number of client and library methods called by

atomic sections for each benchmark. This table shows that programs do indeed make extensive

use of libraries with library methods comprising 88%, 94% and 95% of the total methods called

in the cases of pcmab, traffic and mtrt respectively. Figure 3.19(a)(ii) compares analysis times

(both columns for Halpert and us respectively include Soot-related costs). We give a breakdown

for the running time of each component in our analysis in Figure 3.19(b).

Figure 3.20 gives a comparison of locks inferred. Figure 3.20(i) are the locks inferred by Halpert

et al. and Figure 3.20(ii) the locks we infer. Halpert et al. distinguish between two types of

104 Chapter 3. Scalable lock inference

Program
(i) Halpert (ii) Ours

Static Dynamic
Instance Type
R W R W

sync 0 2 1 2 0 0
pcmab 0 3 1 5 0 0
bank 0 3 0 12 0 0
traffic 0 19 33 67 0 0
mtrt 1 0 905 268 726 130

hsqldb 2 11 ? ? ? ?

Figure 3.20: Number of locks inferred by our analysis alongside those inferred by Halpert et
al., for our set of benchmarks.

lock:

• Static locks: are known at compile-time.

• Dynamic locks: are the same as instance locks.

Static locks are not equivalent to our type locks because acquiring a type lock implicitly locks all

instances. That is, there is no relationship between static and dynamic locks in their approach.

Furthermore, all locks are write locks.

Figure 3.19(a)(iii) gives execution times. We are noticeably slower for all benchmarks due to

the larger number of locks being acquired. However, the breakdown in Figure 3.19(a)(i) shows

that in some cases 95% of call-graph methods are not analysed by Halpert, whereas we have

analysed the call graph in its entirety and are the first lock-inference approach to do so. As a

result, our analysis is sound and infers many more accesses than Halpert’s does. However, we

are still not scalable enough to analyse hsqldb, for which we run out of memory. In Chapter 4,

we present several optimisations to significantly reduce the space and time requirements of our

analysis that will enable us to analyse hsqldb.

3.6 Conclusion

In this chapter, we presented our basic analysis for inferring which objects are accessed inside

an atomic section and showed how we map these accesses to locks. The key feature of this

3.6. Conclusion 105

analysis is that it is able to fully analyse the entire Java library. This is significant because

lock inference has the potential to be able to handle I/O and system calls. However, these

irreversible operations rely on large parts of the library (as was seen from the “Hello World”

program introduced in Section 1.6). Libraries make static analysis hard and that is why prior

work has resorted to either ignoring them, annotating library parameters or only analysing

library call chains up to one-level deep. All of these approaches are unsafe and may lead to

shared accesses remaining unprotected and subsequently race conditions. Ours is the first sound

technique to fully analyse library methods and infer locks that cover all possible accesses that

could occur. However, our basic approach is still not able to handle very large code bases, such

as hsqldb. Furthermore, we infer a very large number of locks for the programs that we can

currently analyse, which cripples run-time performance. In the next two chapters, we tackle

these shortcomings by firstly, employing a number of optimisations to reduce analysis space

and time requirements (Chapter 4) and secondly, performing analyses to reduce the number of

locks inferred (Chapter 5).

106 Chapter 3. Scalable lock inference

Chapter 4

Analysis optimisations

In Chapter 3, we introduced our basic analysis for inferring which objects are accessed in atomic

sections and mapping these accesses to locks. However, although this initial analysis is able

to analyse the entire GNU Classpath library, it still is not able to scale to very large code

bases, such as hsqldb. To overcome this limitation, we employ a number of optimisations to

reduce the space and time requirements of our analysis. Before describing our optimisations,

we first remind the reader about how we propagate data flow information and compute method

summaries. After introducing each analysis optimisation, we use the “Hello World” program

as a test bed to evaluate their individual and combined effectiveness.

For each atomic section a, we first compute summaries for all methods invoked. This is done by

performing a bottom-up traversal of a’s call graph to ensure that a method’s summary is only

calculated once summaries for all called methods are known. The summaries Tm1 , . . . , Tmk
for

mutually-dependent methods {m1, ...,mk} must be computed together. We therefore organise

and traverse the call graph to support both of these requirements by (i) identifying the strongly

connected components (SCC), (ii) creating a directed acyclic graph with edges representing

dependencies between components (SCC-DAG) and (iii) performing a post-order traversal of

this SCC-DAG.

Each component c corresponds to a group of mutually-dependent methods whose summaries

need to be computed together. We calculate for each CFG node n in each method m in c,

107

108 Chapter 4. Analysis optimisations

its aggregate transformer tn,Xm . The summary Tm is then obtained from tNm,Xm by removing

method-local information. Aggregate transformers are computed using a worklist algorithm

with two worklists: intra and inter. Intra consists of nodes whose aggregate transformer needs

to be recomputed because the aggregate transformer of at least one intraprocedural successor

has changed. Inter contains caller nodes n whose invoke transformer tninvoke
needs to be updated

because the summary of at least one callee has changed. If tninvoke
changes as a result, n’s

aggregate transformer also needs to be recomputed. Per-CFG node information is only needed

during summary computation after which only the method’s summary is kept. Initially, intra

contains the exit statement Xm of each method m in c. Each worklist is processed exclusively

until it becomes empty.

Our memory requirements consist of storing for each CFG node n, a local transformer tn and

an aggregate transformer tn,Xm . Changes made to tn,Xm must be propagated to the entry

statement Nm through all intermediate nodes. The updated summary Tm is then spread to all

caller nodes in the current component c.

There can be many CFG nodes and a large number of transformer edges, leading to the vast

memory usage and slow analysis times that were observed in Chapter 3. We employ the

following techniques to reduce both memory and propagation.

4.1 Summarising CFGs

One approach is to reduce the number of CFG nodes. We adopt the technique of Rountev et

al. [RSX08] that summarises the effects of all execution paths between a pair of CFG nodes n1

and n2 by combining transformers for statements along these paths. This summary is called

a jump transformer tn1→n2 and allows data flow information to be propagated from node n2

to n1 (backwards analysis) in one step by composing with this transformer. Calculating the

join for node n of all successors’ aggregate transformers then becomes
⊔
{tn→s ◦ ts,Xm | n →

s ∈ m}. That is, compose each successor’s aggregate transformer with the corresponding jump

transformer and then take the join.

4.1. Summarising CFGs 109

1 class Pr in t e r {
2 . . .
3 atomic void incElapsed () {
4 incElapsedAux (pending . head) ;
5 }
6 atomic void incElapsedAux (Node<Job> n) {
7 i f (n != null) {
8 Job j = n . data ;
9 j . incElapsed () ;

10 Node<Job> next = n . next ;
11 incElapsedAux (next) ;
12 }
13 }
14 }
15

16 class Job {
17 . . .
18 atomic void incElapsed () {
19 int oldElapsed = this . e l apsed ;
20 this . e l apsed = oldElapsed + 1 ;
21 }
22 }

Figure 4.1: Printer example of Figure 3.3 extended with method incElapsed that increments
the elapsed time of each pending job.

In the best case, we can reduce the CFG for a method m to just the two nodes Nm and Xm,

whereby the jump transformer tNm→Xm summarises the entire method. However, the effects of

recursive method calls are only partially known. Hence, in general, the reduced CFG for m will

contain three types of nodes: Nm, Xm and recursive calls rci (the effects of non-recursive calls

are effectively inlined). Jump transformers are computed using a simple data flow analysis that

propagates the identity transformer1 from Xm and each rci up the CFG until either Nm or rcj

is reached. We refer to Xm and rci as jump targets.

We illustrate this technique in Figure 4.1 by extending our Job and Printer classes both with a

method incElapsed that increments the elapsed time for a single job and all jobs in the pending

queue respectively. In the latter case, the method walks through the linked list pending using

the helper method incElapsedAux.

The CFG for incElapsedAux is shown in Figure 4.2(a) and the reduced version with jump

transformers on edges in Figure 4.2(b). Note that the call incElapsedAux(next) remains

1See Section 3.2.8 for a discussion on the choice of initial value and the lattice ordering.

110 Chapter 4. Analysis optimisations

if (...) goto Xm

j = n.data

j.incElapsed()

next = n.next

incElapsedAux(next)

Nm

7

8

9

10

11

Xm

incElapsedAux(next)

Nm

11

Xm

tNm→11

t11→Xm

tNm→Xm

(a) CFG (b) Reduced CFG

Figure 4.2: (a) CFG for incElapsedAux in Figure 4.1 and (b) is the reduced version with jump
transformers on edges that summarise the effects of all execution paths between the source and
destination node. Three types of nodes remain in reduced CFGs: Nm, Xm and recursive calls.

because it is recursive, while the computed summary for j.incElapsed() is inlined because

it is not. The analysis initialises the jump targets Xm and 11 with the maps Xm 7→ id and

11 7→ id respectively and then uses a simple worklist algorithm. The result computed for each

CFG node n is a map with an entry j 7→ tn→j for each jump target j reachable from n (such that

another jump target is not encountered beforehand). If n is not a jump target itself, then its

transfer function is: λmap.map[j 7→ tn ◦map(j) | j ∈ map]. Furthermore, the join of two maps

map1 and map2 is computed by doing a pointwise join: (map1tmap2)(j) = map1(j)tmap2(j).

Once the analysis reaches a fixed point, the results at Nm and the jump targets are used to

construct the reduced CFG.

4.2 Delta transformers

In Section 3.2.8, we described how we initially approximate each aggregate transformer tn,Xm

and summary transformer Tm as being the identity. Moreover, by using subset ordering on

transformers and the fact that our transfer functions are distributive, it follows that our transfer

functions are also monotonic.

4.2. Delta transformers 111

We can take advantage of monotonicity and distributivity to reduce the amount of propagation

that occurs. Monotonicity means that each time a transformer (tn; tn,Xm ; Tm) is updated, it

contains at least the edges it did previously and possibly more (assuming subset ordering). This

can lead to redundant work when performing transformer composition and join. Transformer

composition is distributive, hence if two edges (i.e. one from each transformer) have already

been composed before, composing them again will not give a different result. Similarly, in the

case of join, unioning edges that have already been unioned gives nothing new.

In this section, we show how transformer composition and join can be sped up by propagating

only new transformer edges. As less data flow information is propagated, this also reduces the

amount of memory required for temporary objects. We now describe how this can be achieved.

Previously, we stored an aggregate transformer tn,Xm for each node n, corresponding to the

data flow information exiting n. We now explicitly differentiate between data flow information

flowing into (entry) and out of (exit) a CFG node using inn and outn respectively. Assume also

that our implementation stores both of these values for each CFG node n.

Suppose in1
n and in2

n are successively computed values of inn.2 As in2
n contains at least the

edges in in1
n, we can express it as:

in2
n = in1

n t (in2
n − in1

n) (4.1)

Here, in2
n − in1

n corresponds to transformer difference and produces a transformer containing

the edges in in2
n that are not in in1

n. More precisely, transformer difference is defined as

(in2
n − in1

n)(d) = in2
n(d) \ in1

n(d), for all symbols d in the domain of in2
n. We call this resulting

transformer a delta transformer and denote it using 4. Hence, substituting 4in2
n = in2

n − in1
n

into Equation 4.1 gives us:

in2
n = in1

n t4in2
n (4.2)

2The notation inm
n refers to the mth approximation of the value of in for CFG node n. This superscript

notation is used in the remainder of this section for specifying particular approximations of transformers.

112 Chapter 4. Analysis optimisations

We now show how transformer composition and join can be sped up using delta transformers.

Please note that in our implementation, deltas are not computed by explicitly taking the

difference but instead are constructed during the join operation. To simplify the presentation,

we continue to use the definition using difference.

Composition Without delta transformers, each time inn changes, we compose it with tn to

give the new value for outn:

outn = tn ◦ inn (4.3)

For out1n and out2n, this means the following two operations are performed:

out1n = tn ◦ in1
n (4.4)

out2n = tn ◦ in2
n (4.5)

Thus, each time outn is to be updated, a full transitive closure is performed using all the edges

in tn and inn. However, we already know that in2
n w in1

n, so by using Equation 4.2, the second

update (Equation 4.5) can be rewritten as:

out2n = tn ◦ (in1
n t4in2

n) (4.6)

Transformer composition is distributive, so the equation becomes:

out2n = (tn ◦ in1
n) t (tn ◦ 4in2

n) (4.7)

Finally, using Equation 4.4 we can make one further simplification to give:

out2n = out1n t (tn ◦ 4in2
n) (4.8)

4.2. Delta transformers 113

In other words, each time inn changes, we only need to take the composition with the new

edges (i.e. the delta transformer) and union the result with the previous value of outn. This

can significantly reduce redundant work, which is important especially when transformers get

large.

Join The join operation can be optimised in a similar fashion, whereby only the join of

successors’ new out edges is taken and added to the previous value of inn. This again reduces

the amount of redundant work and speeds up the analysis.

Suppose n has two successors s1 and s2. Let in1
n be the current value of inn. Computing in2

n

is then:

in2
n = out2s1 t out

2
s2

(4.9)

Using Equation 4.8, we can rewrite this to:

in2
n = (out1s1 t (ts1 ◦ 4in2

s1
)) t (out1s2 t (ts2 ◦ 4in2

s2
)) (4.10)

The join operation is commutative, therefore we can rearrange as follows:

in2
n = (out1s1 t out

1
s2

) t (ts1 ◦ 4in2
s1

) t (ts2 ◦ 4in2
s2

) (4.11)

Using a variant of Equation 4.9, we can simplify:

in2
n = in1

n t (ts1 ◦ 4in2
s1

) t (ts2 ◦ 4in2
s2

) (4.12)

Hence, we now only need to take the join of the edges computed when each successor updated

out and union it with the previous value of inn. However, this is still not optimal, as ts1 ◦4in2
s1

may contain edges that are already in out1s1 and were therefore involved in the last join. We

114 Chapter 4. Analysis optimisations

instead obtain only the new edges as follows:

4out2s1 = out2s1 − out
1
s1

(4.13)

4out2s2 = out2s2 − out
1
s2

(4.14)

The final equation for updating inn is:

in2
n = in1

n t (4out2s1 t4out
2
s2

) (4.15)

Intuitively, this means taking the join of each successors’ new out edges and unioning it with

the previous value of inn.

Invoke transformers We have described how delta transformers can be used to speed up

the computation of inn and outn. Recall that for a collection of methods m1, . . . ,mk that are

recursively dependent on each other (or equivalently, are in the same strongly connected compo-

nent), their corresponding summaries Tm1 , . . . , Tmk
have to be computed together (iteratively).

Consequently, because the invoke transformer tninvoke
is the join of all callee summaries, if at

least one callee is in the same component it also has to be computed iteratively. In this section,

we describe how delta transformers can be used to speed up the computation of tninvoke
as well

as the updating of outn to take into account new edges in tninvoke
.

Without delta transformers, tninvoke
is computed as follows (each time a callee summary changes):

tninvoke
=

⊔
{ Tm | m ∈ callees(n) } (4.16)

As with inn, we can speed up this join operation by only taking the join of new edges and then

unioning with the previous value of tninvoke
. If t2ninvoke

is the current approximation of tninvoke
,

computing t3ninvoke
is then:

t3ninvoke
= t2ninvoke

t
(⊔
{ 4T 3

m | m ∈ callees(n) }
)

(4.17)

4.2. Delta transformers 115

It is possible that outn has now changed, so the next step is to compute out3n. Previously,

we showed that to do this, we compose tn with 4inn and union with the previous value of

outn. However, recall that this relies on transformer composition being distributive. That is, if

two edges have already been composed, composing them again does not give a different result.

t3ninvoke
may now contain new edges that have not been previously composed with edges in inn

so it would not be sound to only compute t3n ◦4in2
n. (Note, as inn has not changed, its current

value is still in2
n). Nevertheless, we would still like to perform the minimal amount of work

possible.

We know that t3ninvoke
w t2ninvoke

, so we can express it as:

t3ninvoke
= t2ninvoke

t4t3ninvoke
(4.18)

After applying parameter-to-argument renaming, we have that:

t3n = t2n t4t3n (4.19)

The equation for updating out3n is:

out3n = t3n ◦ in2
n (4.20)

Substituting Equation 4.19 into Equation 4.20, gives us:

out3n = (t2n t4t3n) ◦ in2
n (4.21)

Distributivity of transformer composition allows us to expand this out to become:

out3n = (t2n ◦ in2
n) t (4t3n ◦ in2

n) (4.22)

116 Chapter 4. Analysis optimisations

inn changes

inkn = ink−1n t
(⊔
{4outks | s ∈ succs(n)}

)
4inkn = inkn − ink−1n

outkn = outk−1n t (tn ◦ 4inkn)

4outkn = outkn − outk−1n

tninvoke
changes

4tkninvoke
=
⊔
{4T km | m ∈ callees(n)}

tkn = tk−1n t (tnresult
◦ 4tkninvoke

◦ tnpk
◦ · · · ◦ tnp1

◦ tnthis
)

4tkn = tkn − tk−1n

outkn = outk−1n t (4tkn ◦ ink−1n)

4outkn = outkn − outk−1n

Figure 4.3: How delta transformers are used to update inn, outn and tn when either inn or
tninvoke

change.

After a final simplification, we get the following equation:

out3n = out2n t (4t3n ◦ in2
n) (4.23)

Hence, when tninvoke
changes, we only have to perform transformer composition with the new

edges 4tninvoke
(after performing parameter-to-argument renaming) and union the result with

the previous value of outn. Intuitively, this is sound because edges in the previous value of

tninvoke
(i.e. t2ninvoke

) will already have been composed with edges in the current value of inn (i.e.

in2
n) at some point previously and so composing them again would not give a different result.

Figure 4.3 gives a summary of how delta transformers are used to iteratively update inn, outn

and tn.

Preserving soundness A delta transformer corresponds to the difference between the cur-

rent value of a transformer and its previous value. For example, 4out2n contains the edges in

out2n that are not in out1n. Furthermore, we have shown that only deltas need to be propa-

gated to predecessor CFG nodes (intraprocedural) or caller nodes (interprocedural). However,

it is possible that outn or Tm are updated multiple times before their corresponding deltas are

propagated. An example is if the intra worklist is ordered such that preference is given to

4.3. Parallel propagation 117

successor nodes (in order to reduce the amount of propagation). If a branch or loop exists, a

node may be picked off the worklist several times before its predecessors are. Consequently, the

delta transformer will contain only a subset of the edges that need to be propagated potentially

leading to an unsound analysis result.

We deal with this problem by propagating 4outn and 4Tm immediately to predecessors or

callers every time they are computed. This requires storing for each CFG node n: 4inn, which

is updated by successors as and when they compute a non-empty value for 4out. Similarly,

for caller nodes, we store 4tninvoke
, which is updated by callees with their 4Tm. When a CFG

node is picked off intra, it uses the stored value of 4inn (rather than computing the join) after

which it resets 4inn to the empty delta transformer. 4tninvoke
is handled identically when a

caller node is picked off inter.

4.3 Parallel propagation

Another technique we employ to speed up the analysis is to perform propagation in parallel

when possible. Our intra worklist contains all CFG nodes that may have to be updated because

at least one intraprocedural successor’s out has changed. There is a data flow dependency that

exists between CFG nodes in the same method because data is passed from one to the next.

As a result, it would be difficult to spread this propagation across multiple threads. However,

we can exploit the independence of CFG nodes between different methods to construct a set

of per-method worklists and process these lists in parallel. Figure 4.4 shows two example

CFGs. Although it would be difficult to parallelise propagation within method m or p, they

are independent of each other and so their respective intraprocedural propagations can be

performed by different threads.

Similarly, our inter worklist contains caller nodes that need to be updated because the summary

of at least one callee has changed. This involves taking the join of all callee summaries and

then performing parameter-to-argument renaming. There is no dependence between different

caller nodes in the list, so we process them all in parallel.

118 Chapter 4. Analysis optimisations

...

...

...

...

Nm

1

2

3

4

Xm

...

...

Np

5

6

Xp

(a) (b)

Figure 4.4: Although data flow dependencies exists between CFG nodes within a method,
distinct methods are independent from each other and so their respective intraprocedural prop-
agations can be performed by distinct threads. (a) and (b) are two example CFGs for arbitrary
methods m and p respectively.

Although we parallelise both intraprocedural and interprocedural propagation, our overall prop-

agation algorithm is intraprocedurally eager [KK08, KSK09]. This means that we first perform

as much intraprocedural propagation as possible and only when there is no more left to do, we

perform one round of interprocedural propagation. We then perform intraprocedural propaga-

tion again and this cycle continues until a fixed point is reached. The motivation behind this

is that interprocedural propagation is expensive and so it should be done as little as possible.

4.4 Efficient data structures

The scalability of a summary-based analysis will depend upon how efficiently its transformers

can be represented and how fast the composition and join operation can be performed. Repre-

senting transformers as graphs is a great first step, as is evident from our results in Section 3.5.

However, this is not enough: the choice of data structures used internally to represent these

graphs can also drastically impact both memory and speed.

Initially, we used HashSets and HashMaps from the standard Java Collections API but soon

found them to be less than ideal for two reasons:

4.4. Efficient data structures 119

• Temporary objects: during the analysis, a large number of temporary objects are

constructed. This causes huge memory spikes and frequent garbage collections. An

instance of java.lang.Object in 64-bit Java occupies 8 bytes, before additional fields in

subclasses are considered.

• Lots of indirection: We found that HashSet contained a lot of indirection that nega-

tively impacted both performance and memory usage. HashSet is implemented internally

using a HashMap, whose hash chains are implemented as linked lists.

Representing transformer edges and their corresponding edge functions as objects also added

to the number of temporary objects and indirection.

High-performance implementations typically use primitives to represent state [Lea05] and ma-

nipulate it very quickly using bit-wise operations. As a result, we reimplement transformer

edges as 64-bit longs and edge composition as a bit-wise operation. However, using primi-

tives with the Java Collections classes leads to boxing/unboxing in/out of their corresponding

wrapper classes (e.g. Long for long), which again is not ideal. We therefore use the Trove

library,3 which provides primitive implementations of many Java collections, such as HashSets

and HashMaps. Our transformers are then maps from integers (representing symbols) to sets of

longs (representing sets of transformer edges).

Figure 4.5(a) shows our 64-bit encoding for transformer edges. The number of bits allocated

for each field is shown in brackets. We now describe each field:

• Access: one bit is used to record whether the edge represents an object access or not.

• Read/write: one bit is used to record whether this is a read or a write (set bit means

write).

• Source and destination states: these are the source and destination NFA states re-

spectively recorded as part of the edge function. The start state has the special value of

all 1s.

3http://trove4j.sourceforge.net

120 Chapter 4. Analysis optimisations

Access (1) Read/write (1) Source state (21) Dest. state (21) Dest. symbol (20)

(a) General edge format

0 0 n 0 dj

(b) loadn edge

0 0 start state 0 dj

(c) storen edge

0 0 0 0 dj

(d) identity edge

1 1 221 − 1 221 − 1 220 − 1

(e) kill edge (i.e. all 1s)

Figure 4.5: Our 64-bit encoding for transformer edges. (a) is the general format (number of
bits for each field is shown in brackets), (b)-(e) show the values of the fields for loadn, storen,
identity and kill edges (see Section 3.2.3 for their definitions).

• Destination symbol: the symbol this edge maps to in the exit environment e′ (e.g. dj

in di → dj).

The values of these fields for loadn, storen, identity and kill edges are shown in Figure 4.5(b)-

(e). These values have been specially chosen to make edge composition possible using bit-wise

operations, as shown in Figure 4.6. The method composeEdges computes e2 ◦ e1. More-

over, DEST SYM MASK and SRC STATE MASK are bitmasks that obtain the destination symbol and

source-state fields respectively.

4.5 Worklist ordering

A final optimisation we perform, which can make a big difference, is to order the intra worklist

so that nodes lower down are given preference over those higher up.4 This makes intuitive

4For a forwards analysis, nodes higher up would be given preference over nodes lower down.

4.5. Worklist ordering 121

public f ina l long DEST SYM MASK = 0x00000000000FFFFFL ;
public f ina l long SRC STATE MASK = 0x3FFFFE0000000000L ;

// pos t : computes e2 o e1
public long composeEdges (long e1 , long e2) {

i f (i s IdEdge (e2)) {
return (e1 & ˜DEST SYM MASK) | e2 ;

}
else i f (i s K i l l E d g e (e2)) {

return e2 ;
}
else i f (i sAccessEdge (e1)) {

return (e1 & ˜(SRC STATE MASK | DEST SYM MASK)) | e2 ;
}
else {

return e2 ;
}

}

public boolean i s K i l l E d g e (long e) {
return e == −1;

}

public boolean i s IdEdge (long e) {
return (e >> 20) == 0 ;

}

public boolean i sAccessEdge (long e) {
return (e >>> 63) == 1 ;

}

Figure 4.6: With the 64-bit transformer edge encoding of Figure 4.5, edge composition can be
performed by bit-wise operations.

122 Chapter 4. Analysis optimisations

...

...

...

Nm

1

2

3

Xm

Worklist
[Xm]
[3]

[1, 2]
[2, Nm]
[Nm, 1]

[1]
[Nm]

[]

Worklist
[Xm]
[3]

[1, 2]
[1]

[Nm]
[]

Worklist
[Xm]
[3]

[2, 1]
[1]

[Nm]
[]

(a) (b) (c) (d)

Figure 4.7: This example shows that by ordering the intra worklist such that CFG nodes lower
down are given preference to those higher up, propagation can be reduced. (a) is an example
CFG, (b) is the sequence of worklists that result from popping nodes off in the order they were
inserted, and (c) is the sequence of worklists that result from popping off successor nodes before
predecessor nodes. Worklist ordering is implemented by keeping the list sorted from highest to
lowest, as shown in (d).

sense because data flow values propagate up the CFG (backwards analysis), and by giving

preference to nodes lower down it means that data flow values only propagate upwards once

they currently cannot change any further. To illustrate this, consider the example in Figure 4.7.

The details of the exact CFG nodes are irrelevant except that there is an if statement at node

1. Backward propagation starts by initialising the worklist to the method exit statement Xm.

Figure 4.7(b) is the sequence of worklists that result from popping nodes off in the order they

were inserted whereas in (c) successor nodes are popped off before predecessor nodes regardless

of the order in which they were inserted. The important thing to note is that in the former

case of Figure 4.7(b), node 1 is processed twice: once after node 3 and then after node 2.

However, in Figure 4.7(c) it is only processed once because when the worklist is [1, 2], 2 is

given preference over it.

This ordering is achieved by partially ordering CFG nodes within a method such that nodes

higher up have lower numbers than nodes lower down. The worklist is then kept sorted from

highest to lowest. This is shown in Figure 4.7(d).

4.6. Evaluation 123

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2 3 4 5 6 7 8

R
u
n
n
in

g
 t
im

e
 (

m
in

u
te

s
)

Number of threads

None
Summarise CFGs

Delta transformers
Worklist ordering

All

(a)

Optimisation Average MB Peak MB

None 4923.92 8183.18
Summarise CFGs 2094.68 3470.65
Delta transformers 3848.98 6538.27
Worklist ordering 4804.73 8037.14

All 1741.39 3122.84
(b)

Figure 4.8: Effect of each individual optimisation on analysis time (a) and memory usage (b)
for the “Hello World” program.

124 Chapter 4. Analysis optimisations

4.6 Evaluation

In this section, we evaluate the impact of our analysis optimisations on memory usage and

running time for when each optimisation is individually enabled and when all are enabled.

We use the “Hello World” atomic section to compare the effects of CFG summarisation, delta

transformers, parallel propagation and worklist ordering. We also evaluate the impact of our

optimisations on scalability. In particular, from Section 3.5 we saw that our basic analysis is

unable to analyse the very large code base of hsqldb. With these optimisations enabled, we are

indeed now able to analyse it. Furthermore, the space and time requirements of the remaining

benchmarks are dramatically reduced.

We can now analyse our benchmarks on the commodity machine liatris with a minimum and

maximum heap size of 8GB. However, hsqldb’s memory requirements are high, so we analyse

it on ax3 (the specifications of these machines can be found in Section 3.5). All analysis

configurations use the efficient data structures detailed in Section 4.4. We take the average of

10 runs for each configuration.

4.6.1 Optimisation comparison

Figure 4.8(a) shows a comparison of execution times and Figure 4.8(b) a comparison of average

and peak memory usage. We run each of CFG summarisation, delta transformers and worklist

ordering with a varying number of threads (shown in the x-axis). The all configuration consists

of all three optimisations enabled. When evaluating memory usage, we only use one thread.

The results give a number of interesting insights: summarising CFGs gives the biggest reduction

in memory usage. This is because the number of CFG nodes is significantly reduced and thus

so is the amount of analysis state. Secondly, deltas give the best running time performance

throughout. In fact, it even outperforms the use of multiple threads. This is not surprising,

because firstly it performs very little redundant work and secondly, as the analysis progresses,

the amount of data flow information propagated reduces thus leading to less work over time.

Memory usage is also lower because the number of temporary objects are reduced.

4.6. Evaluation 125

Parallel propagation only gives gains in speed for up to three threads. We think the reason

for this is because we process our two worklists exclusively (see Section 4.3). Consequently,

threads that have become free while processing the current list cannot proceed with the other

list until the remaining threads have completed. This is essentially like a barrier operation.

Some methods or caller nodes may require more propagation than others and so this creates a

bottleneck.

We were surprised that ordering the worklist so that a node is given preference over its pre-

decessors outperformed the analysis time of summarising CFGs. This might indicate that

unnecessary propagation occurs quite often if worklists are not ordered appropriately.

4.6.2 Scalability

The main contribution of this thesis is a lock-inference approach that is able to scale to programs

making use of mature libraries. In Chapter 3, we introduced our basic analysis for inferring

what objects are accessed inside each atomic section and mapping these to a suitable set of

locks. This basic analysis allowed us to analyse the “Hello World” atomic section, something

which prior work has not been able to do. We were also able to analyse the GNU Classpath

library entirely. However, while this been a great improvement on existing work, we saw in

Section 3.5 that our basic analysis was still not able to scale to the very large code base of

hsqldb. In this section, we show that with all analysis optimisations enabled (using eight

threads), we are indeed now able to analyse it. Furthermore, the running time and memory

usage of the remaining benchmarks are drastically reduced.

Figure 4.9 shows the new running times for our analysis on the benchmarks sync, pcmab, bank,

traffic and mtrt when all optimisations are enabled. Furthermore, the table also contains the

results for hsqldb. Note that being able to analyse hsqldb is a big achievement, given that its call

graph contains nearly 3000 library methods that are ignored by prior lock-inference approaches.

This is the first time that this benchmark has been analysed in its entirety. Figure 4.10 shows

the number of locks inferred for hsqldb. Our analysis was able to handle this program after

enabling all our analysis optimisations and with a heap size of 70GB. Memory usage peaked at

126 Chapter 4. Analysis optimisations

Program
Accesses Locks Total Average Memory Peak Memory

(secs) (secs) (secs) (MB) (MB)
sync 0.053 0.0090 127 947 1781

pcmab 0.194 0.018 127 1438 2656
bank 0.151 0.019 127 1397 2868
traffic 0.433 0.059 130 946 1732
mtrt 33.901 1.902 169 1390 2618

hsqldb 21936.024 1345.859 23886 33159 65904

Figure 4.9: Shows the running time and memory usage our approach uses with all analysis
optimisations enabled for the benchmarks from Section 3.5. Both time and memory usage have
dramatically been reduced. Most impressive is that we are now able to analyse hsqldb.

Program
Halpert Ours

Static Dynamic
Instance Type

R W R W

hsqldb 2 11 32508 24956 26429 10943

Figure 4.10: Locks inferred by our analysis for hsqldb alongside those inferred by Halpert et al.

64.4GB and averaged 32.4GB. During the ∼7 hours taken to complete the analysis, only 153

seconds (i.e. 2.5 minutes) were spent doing garbage collection. The long analysis time is due

to long call chains, large call-graph components and consequently vast numbers of transformer

edges that are propagated. Unsurprisingly, after the first few atomics had been analysed, the

remainder were quicker because a large number of methods were common across atomics.

It is clear that the number of locks inferred for hsqldb is alarmingly high in comparison to

Halpert et al. However, there are a couple of reasons for this: (1) we analyse more object

accesses, as we analyse the 3000 library methods that Halpert et al. do not and (2) we currently

assume that all object accesses are shared whereas Halpert et al. remove locks that are thread-

local. It is because of this large number of locks that the resulting instrumented program takes

500 seconds to execute. This is 160 times slower than all of a global lock, Halpert’s approach

and the original locking policy of the benchmark.

In the next chapter, we look at several optimisations to significantly reduce this set of locks

and reduce this slowdown to just 3.5x for hsqldb compared to its original locking policy.

4.7. Conclusion 127

4.7 Conclusion

In Chapter 3, we presented the first lock-inference analysis that is able to fully analyse library

methods. We showcased its scalability by analysing the entire GNU Classpath library. However,

our basic analysis still could not handle the very large code base of hsqldb. Although analysis

times were quite slow, not being able to analyse a program is more serious. This motivated

us to look for ways to improve the efficiency of our analysis both in terms of memory usage

and execution time. In this chapter, we have presented several optimisations that allow us to

do this: CFG summarisation, delta transformers, worklist ordering and parallel propagation.

We describe each one and then evaluate their effectiveness at improving efficiency. We also

demonstrate that with these optimisations, we are now able to analyse hsqldb. Our results

show that our optimisations dramatically improve the analysis performance and memory usage.

Despite our analysis being much more efficient, the number of locks we infer is extremely

high. This negatively affects the performance of the instrumented programs because there is

tremendous overhead due to locking operations. In the next chapter, we shall investigate a

number of techniques for improving this.

128 Chapter 4. Analysis optimisations

Chapter 5

Minimising locking overhead

In this thesis, we are presenting a lock-inference approach for Java that is able to analyse

programs that make use of the standard library. This enables us to support concurrent atomic

sections that perform I/O and system calls, as they rely on large parts of the library. Due to

their complexity, prior work has shied away from dealing with libraries and as a result, some

shared accesses may remain unprotected.

The first stage of our lock-inference technique is to infer what objects are accessed in each

atomic section. This set of accesses are then mapped to a suitable set of locks that protect

them. Finally, the program is instrumented with these locks. In Chapter 3 and Chapter 4,

we have presented our analysis for inferring object accesses, together with optimisations that

are required for the analysis to scale to very large code bases. However, although we are

able to achieve such scalability, the resulting performance from the instrumented programs is

tremendously bad. For example, in Section 4.6, hsqldb runs over 160x slower when instrumented

with our inferred locks than the original locking policy. This slowdown is due to three things:

• Too many locks/lock operations: we assume that all object accesses are shared,

however, actually most are not [CGS+99]. Furthermore, in certain cases, some shared

objects also do not need to be locked.

• Inefficient lock implementation: our lock implementation is built using synchro-

129

130 Chapter 5. Minimising locking overhead

nized and we also do not represent lock state efficiently.

• Excessive blocking for deadlock avoidance: when a lock l is not available, we release

all already-acquired locks and then block waiting for l to be released. This breaks the

necessary “hold and wait” condition and thus ensures that deadlock does not occur.

However, it incurs significant overhead due to context-switches.

We now present solutions to each of these. We then evaluate their effectiveness in reducing

execution overhead.

5.1 Reducing the number of locks acquired

As mentioned above, our lock-inference analysis assumes that all object accesses need to be

locked. However, a large number of these do not need to be. We statically identify several

classes of such objects: thread-local, instance-local, class-local, method-local, dominated and

read-only. We also dynamically elide locks when there is only a single thread executing. All

our analyses are completely automatic and do not require any programmer-annotations. We

now describe each of these, starting with lock elision.

5.1.1 Lock elision for single-threaded execution

We have found that during the initialisation of an application, a lot of objects are accessed from

within atomic sections even though there is typically only a single thread executing. Given that

we perform instrumentation at compile-time, this means that locks are acquired when entering

an atomic section, even though there is no contention. Such a scenario can impose significant

yet unnecessary overheads on the resulting execution. Thus, we optimise our instrumentation

so that locks are treated as no-ops when there is only one thread executing. Note, these

object accesses are not necessarily thread-local but just that they are only being accessed by a

single thread at present. We additionally remove thread-local locks in a separate compile-time

analysis, details of which are given in Section 5.1.2.

5.1. Reducing the number of locks acquired 131

We detect whether only a single thread is executing by incrementing and decrementing a counter

just before returning from Thread.start() and Thread.join() respectively. If this counter is

0 at the start of an atomic section, we elide the locks. Otherwise, we acquire them as normal.

A race could occur if a thread T1 is executing inside an atomic section with locks elided while

another thread T2 is spawned and subsequently enters the same or another conflicting atomic

section. However, this could only happen if we allowed threads to be spawned from within

atomic sections (because T2 can only be spawned by T1), which we do not.

5.1.2 Thread-local objects

An object only needs to be locked if it may be accessed by multiple concurrent threads. We

employ Soot’s built-in thread-local analysis to detect objects that are not and do not generate

locks for them. This analysis uses allocation sites to approximate run-time objects. Further-

more, as lvalue expressions may resolve to any number of objects at run-time, we only classify

an lvalue as thread-local if all abstract objects it may point to are classified as thread-local.

Lhotak [Lho06] give details of the analysis.

5.1.3 Instance-local objects

Another class of objects we avoid locking are those that are implicitly protected and so do not

need to be explicitly locked. These are objects that are completely encapsulated within another

object because they exist solely to implement the latter’s functionality. Examples include the

underlying Node objects used in Java’s LinkedList implementation. The list dominates all

accesses to the nodes, so locking the list implicitly locks the nodes. We call these instance-local

objects, as no references to them exist outside the list instance. Such objects are common in

Java’s Collections API but we have also found them common in other classes. Note, these

objects may still be thread-shared, as if the list is accessed by multiple threads then so will

the underlying nodes. However, taking a lock on the owning linked list implicitly protects the

nodes thus preventing the need to lock them.

132 Chapter 5. Minimising locking overhead

class LinkedLis t {
Node head ;
Node t a i l ;

public atomic void add (Object o) {
Node n = new Node (o) ;
i f (head == null) {

head = t a i l = n ;
}
else {

t a i l . next = n ;
t a i l = n ;

}
}

}

class Node {
Node next ;
Object cargo ;

}

Figure 5.1: Example LinkedList and Node class definitions with an add method.

: LinkedList

: MyObj

: MyObj

: MyObj

head tail

nextnext

data

data

data

f
g

h
: Node : Node : Node

Figure 5.2: Diagram showing a possible run-time heap organisation of the LinkedList of Fig-
ure 5.1 and associated objects. The LinkedList instance forms an ownership domain whereby
it owns and dominates the Node objects within it.

5.1. Reducing the number of locks acquired 133

class LinkedLis t {
. . .
public void add (Object o) {

LinkedLis t obj1 = this ;
Node obj2 = this . t a i l ;
lockWrite (obj1) ;
lockWrite (obj2) ; // not needed as Nodes are l o c a l to l i s t
Node n = new Node (o) ;
i f (head == null) {

head = t a i l = n ;
}
else {

t a i l . next = n ;
t a i l = n ;

}
unlockWrite (obj2) ;
unlockWrite (obj1) ;

}
}

Figure 5.3: The add method from Figure 5.1 instrumented with our inferred locks. The im-
portant observation here is that because all accesses to the Node instances are dominated by
the LinkedList, they are implicitly protected by the list’s lock and so only this needs to be
acquired.

Figure 5.1 gives class definitions for LinkedList and Node, including LinkedList’s add method.

Whenever an object is added to the list, a Node is created to hold it and is then appended to

the tail. Figure 5.2 shows a possible run-time heap organisation of the list. Figure 5.3 gives

the locks that our näıve lock-inference analysis inserts: a write lock on this is taken to protect

the write of the head and tail fields. Furthermore, the tail node is locked, to protect the

update of its next field. However, because all accesses to Nodes are internal to the LinkedList

instance, we can protect them all with just the lock on the list, i.e. this.

In general, an object O2 is instance-local to an object O1 if O1 creates O2 and the only references

to O2 are made by O1 or other objects also local to O1. O1 is said to form an ownership

domain and it dominates all accesses to objects in this domain. This is known as owner-as-

dominator [DM05, CDE07]. All objects in this domain can be protected by simply acquiring

the lock on O1.

134 Chapter 5. Minimising locking overhead

Data flow analysis

We perform a flow-insensitive escape analysis to identify instance-local objects. We now de-

scribe the basic analysis. Later, we extend it to also handle instance handover and iterators.

Our escape analysis has two escape modes: Internal and External (whereby Internal < Ex-

ternal). When an object is created, it is marked as being internal and may become external

if:

• It is assigned to a field that is external.

• It is passed as an argument to a method and the receiver object is external or the method

is static.

• It is returned from a non-private method.

A field may become external if:

• It is accessed through an external receiver.

• It is assigned an external reference.

Initially, static fields are marked external, instance fields are marked internal, private method

parameters are internal and non-private method parameters are external. We model the return

value as assignment to a special return variable $r, which is initially internal for private methods

and external for non-private and static methods. The reference this is always internal. We

model array lookups as field accesses (in the case of both reads and writes).

Our whole-program analysis finds all reachable methods in the program (including all reachable

library methods) and processes them in an arbitrary order until a fixed point is computed.

We compute per-class and per-method state during this fixed-point computation. Per-class

summaries (e.g. Tc for a class c) keep track of the escape state of fields, while per-method

5.1. Reducing the number of locks acquired 135

t[x = y] = Tm[x 7→ Tm(x) t Tm(y)][y 7→ Tm(x) t Tm(y)]
t[x = new] = Tm[x 7→ External] (if m is main or Thread.run)

t[x = y.f] = Tm[x 7→ Tm(x) t Tm(y) t Tc(.f)]
Tc[.f 7→ Tc(.f) t Tm(x) t Tm(y)]

t[x.f = y] = Tm[y 7→ Tm(y) t Tm(x) t Tc(.f)]
Tc[.f 7→ Tc(.f) t Tm(y) t Tm(x)]

t[x = C.f] = Tm[x 7→ External]

t[C.f = y] = Tm[y 7→ External]

t[x = y[*]] = ∀c ∈ possibleElemTypesOf (y) . Tc[$elem 7→ Tc($elem) t Tm(x) t Tm(y)]
Tm[x 7→ Tm(x) t Tm(y) t

⊔
{Tc($elem) | c ∈ possibleElemTypesOf (y)}]

t[x[*] = y] = ∀c ∈ possibleElemTypesOf (x) . Tc[$elem 7→ Tc($elem) t Tm(x) t Tm(y)]
Tm[y 7→ Tm(y) t Tm(x) t

⊔
{Tc($elem) | c ∈ possibleElemTypesOf (x)}]

t[x[*] = null or new] = ∀c ∈ possibleElemTypesOf (x) . Tc[$elem 7→ Tc($elem) t Tm(x)]

t[return x] = Tm[x 7→ Tm(x) t Tm($r)][$r 7→ Tm(x) t Tm($r)]

t[throw x] = Tm[x 7→ External]

Figure 5.4: Transfer functions for instance-local object inference.

summaries (e.g. Tm for a method m) do so for locals, parameters and return values.1 Like our

object-access inference analysis, we analyse library methods fully.

We use the results of our escape analysis when converting the access NFA (computed during

our object-access inference analysis) to locks (see Section 3.3) by only inferring locks for objects

that are not instance-local.

Figure 5.4 gives our transfer functions. We will now describe each function in turn. Note that

we assume that the types of the left- and right-hand sides of each assignment are references.

x = y In this statement, the value of y is being assigned to x and so x and y are now aliases.

Hence, y’s escape state should be propagated to x. This is the first part of the update to Tm:

x 7→ Tm(x) t Tm(y). Furthermore, if x’s escape state later changes, then it means that the

escape state of the object it points to has changed. As x and y are aliases (up to the point

where x is later redefined), we should also conservatively propagate x’s escape state to y. This

is safe because going from internal to external results in locking more objects. Note, this is a

flow-insensitive analysis and so we have a single value for Tm for the entire method m. This

1We use the same notation Tm for method summaries, as in our object-access inference analysis of Chapter 3,
but the summaries themselves are completely different.

136 Chapter 5. Minimising locking overhead

means that the mapping for x must be the join of all possible escape states that x could have

in the method and that is why the join Tm(x) t Tm(y) is taken (this is also the reason why x’s

escape state is propagated to y).

x = new When an object is constructed, its initial escape state is internal. That is, it is

considered instance-local to the enclosing object. There are certain cases when this assumption

is not correct, such as if the enclosing method is main or Thread.run because we assume neither

to be part of an object.2

x = y.f This case is similar to x = y; The object referenced by y.f is assigned to x, so y.f’s

escape state is propagated to x and vice-versa. It is possible that Tc(.f) may be external but

Tm(y) internal. One option would be to update Tm(y) to external, however, this would then

require locking y, despite it not escaping the enclosing object. On the other hand, we could leave

Tm(y) as internal and Tc(.f) as external thus requiring locking y.f but not y. This still ensures

soundness because all external objects are locked and is the approach we take subsequently. It

is also possible that Tm(y) is external and Tc(.f) is internal. We take the conservative approach

that if an object becomes external then all its fields also become external. This is captured by

taking the join with Tm(y) when updating Tc(.f). Note, the scope of internal and external are

with respect to the enclosing instance.

x.f = y Similar to x = y.f.

x = y[*] Here, some element of the array y is being assigned to x. We abstract away the

particular array index. We model array accesses as accessing a special field called $elem in the

class corresponding to the run-time type of the element. However, unlike objects whereby the

particular field being accessed is known at compile-time (i.e. which class the field belongs to),

it is not possible in general to know which $elem field is being accessed because that requires

knowing the types of array elements. For an array of type T[], the type of the array elements

2Although run is an instance method of Thread, we have not come across a case whereby an instance field
was initialised in it and thus treat all objects allocated in it as external.

5.1. Reducing the number of locks acquired 137

can be T or any of its subclasses. We therefore use Soot’s points-to analysis to obtain the

possible element types and then update Tc($elem) for each of them. Again, if y is external,

then elements also become external. As there may be many possible element types for y, we

take the join of all of them when updating Tm(x).

x[*] = y Similar to x = y[*].

return x We treat returning a value as an assignment to a special variable $r, i.e. $r = x.

This variable is maintained on a per-method basis and therefore this case is the same as x =

y.

throw x Exception objects are assumed to escape the enclosing object and therefore x is

assigned the escape state external.

Utility methods

Normally, passing a local variable as an argument to a static method or an instance method

of an external object makes it external. However, some methods perform a utility function,

such as arraycopy, which would not have affected the escape state if they had been inlined.

We have found that by not treating such methods as if they were inlined, many variables and

fields quickly become external. We therefore feel that it is necessary to treat these functions

essentially as no-ops:

• System.arraycopy(Object src, int srcStart, Object dest, int destStart, int

len): Copy one array onto another.

• Arrays.fill(Object[] a, int fromIndex, int toIndex, Object val): Fill a range

of an array with an Object value.

• AbstractCollection.equals(Object o1, Object o2): compare two objects accord-

ing to Collection semantics.

138 Chapter 5. Minimising locking overhead

• Object.clone(): clones the object.

Iterators and inner classes

Iterators are commonly used to traverse Java collections and are usually implemented as inner

classes. However, iterator instances escape their collection object and may also access its fields

(e.g. head in LinkedList). With our simple analysis, these fields would consequently be tagged

as external, although we have previously established that they should be internal.

We make the observation that although iterators escape, they are still logically part of the

collection and should be treated as such. In particular, accessing fields of the underlying

collection should not make them external. We conjecture this to be true of inner class instances

in general and thus extend our treatment to not just iterators but also inner classes.3 We now

describe how we do this.

When an inner class instance is created, the enclosing this reference is passed as the first

parameter to the constructor and subsequently stored in the final field this$0. Figure 5.5

shows an example code fragment from Java’s AbstractList class (abbreviated to AbsList) to

illustrate this. All accesses to the enclosing instance’s fields are made through this$0. Usually,

all parameters of a constructor are assumed to be external, however, we tag this first parameter

as internal. The reason for this is so that when it is assigned to this$0 in the constructor,

the escape state of this$0 remains internal. More abstractly, we are saying that we know

the reference being passed to the constructor is in the list’s ownership domain. This becomes

important when accessing enclosing instance fields, because field accesses through an external

receiver makes the field external.

Handovers

Sometimes an object is constructed and then passed on to another object, with the creating

object never accessing it. We call this a handover. In the example shown in Figure 5.6, an

3If an iterator is not an inner class, then our approach cannot handle them.

5.1. Reducing the number of locks acquired 139

class AbsList . . . {
. . .
private class I t r implements I t e r a t o r <E> {

. . .
}
. . .
public I t e r a t o r <E> i t e r a t o r () {

return new I t r () ;
}
. . .

}
(a)

public I t e r a t o r i t e r a t o r () {
AbsList r0 ;
AbsList$ I t r $r1 ;

r0 := @this : AbsList ;
$r1 = new AbsList$ I t r ;
s p e c i a l i n v o k e $r1 .<AbsList$ I t r : void < i n i t >(AbsList , AbsList$1)>(r0 , null) ;
return $r1 ;

}

class AbsList$ I t r extends Object implements I t e r a t o r {
. . .
f ina l AbsList this$ 0 ;
. . .
private void < i n i t >(java . u t i l . AbsList) {

AbsList$ I t r r0 ;
AbsList r1 ;
r0 := @this : AbsList$ I t r ;
r1 := @parameter0 : AbsList ;
r0 .<AbsList$ I t r : AbsList this$0> = r1 ;
. . .

}
. . .

}
(b)

Figure 5.5: (a) Java and (b) Jimple code for java.util.AbstractList (abbreviated to Ab-

sList) and its inner iterator class java.util.AbstractList$Itr. This example demonstrates
how a reference to the enclosing AbstractList instance is implicitly passed to the iterator
instance and stored in the final field this$0. By ensuring that this first constructor parameter
is kept internal, we trick the analysis into thinking that all fields that are marked as internal in
AbstractList are still the case even if they are accessed by the iterator (see field access rules
in Figure 5.4).

140 Chapter 5. Minimising locking overhead

class TreeMap<K, V> extends AbstractMap<K, V> . . . {
f ina l Comparator<? super K> comparator ;
. . .
public TreeMap(Comparator<? super K> c) {

comparator = c ;
. . .

}
. . .

}

TreeMap<MyObj , Str ing> map = new TreeMap<MyObj , Str ing >(new MyComparator ()) ;

Figure 5.6: An example of a handover whereby a MyComparator object is instantiated and then
passed to the TreeMap constructor and is never accessed again in the creating scope.

application-specific comparator instance MyComparator is created and passed to a TreeMap

constructor. Although the comparator is created outside map, it is never accessed by the

creating object (or any other object except map) and should be treated as being part of the map’s

ownership domain. However, our current analysis marks the parameters of non-private methods

as external and so is not able to do this. A handover is like a transfer of ownership [MR07].

We extend our analysis to detect handovers. We use Soot’s use-def analysis to find arguments

to method calls that:

1. Refer to newly constructed objects.

2. Are never accessed by the creating object (except when argument passing).

Figure 5.7 gives the initial version of our algorithm. It takes as input the set of reachable

methods of the program being analysed (including all reachable library methods). For every

method call mc, we iterate through each argument a. We first check that all of a’s reaching

definitions are of the form a = new (i.e. that a only refers to a newly constructed object). If

this is the case then we check that a has no other live uses except mc. These two checks confirm

that the argument is a newly created object that is not accessed by the creating scope except

when passing it as an argument in mc.

5.1. Reducing the number of locks acquired 141

f indHandovers (methods) {
for (Method m : methods) {

c a l l s = method c a l l s in m
for (MethodCall mc : c a l l s) {

args = arguments passed to c a l l mc
for (Arg a : args) {

i f (a i s a l o c a l v a r i a b l e) {
d e f s = getReachingDefs (a , mc) ;
i f (d e f s are a l l o f the form a = new) {

i f (no l i v e uses o f a except c a l l mc) {
a . handover = true ;

}
}

}
}

}
}

}

Figure 5.7: Pseudocode for the simple version of our handover detection algorithm.

When is a handover not a handover?

There is one subtle case when this simple algorithm would incorrectly identify a handover. The

problem arises from the fact that Soot’s use-def information does not distinguish between single

and multiple executions of a use statement. Thus, it may return a singleton statement as the

use but this statement may be executed multiple times before the variable is redefined. To

illustrate this, Figure 5.8 shows two example programs that contain loops. In Figure 5.8(a),

a new object is constructed and passed to the MyObj constructor within the loop whereas in

Figure 5.8(b), the handover object is created outside the loop and is passed an arbitrary number

of times to the MyObj constructor. In both cases, the use-def information will return that the

only use of x is the line y = new MyObj(x), however, it does not capture the fact that in the

case of Figure 5.8(b), this statement is executed multiple times and so x is actually passed to

multiple object constructors. Recall that the purpose of detecting handover arguments is so

that if they are assigned to fields in the callee object, they can be treated as internal objects.

Handovers can only happen once, as otherwise that would constitute sharing and means these

objects would need to be locked.

We update the algorithm in Figure 5.9 to detect this case. The modification looks for cycles

142 Chapter 5. Minimising locking overhead

while (. . .) {
x = new MyObj () ;
y = new MyObj(x) ;

}

x = new MyObj () ;
while (. . .) {

y = new MyObj(x) ;
}

(a) (b)

Figure 5.8: Two example programs showcasing that loops can lead to incorrectly identifying a
handover.

f indHandovers (methods) {
for (Method m : methods) {

c a l l s = method c a l l s in m
for (MethodCall mc : c a l l s) {

args = arguments passed to c a l l mc
for (Arg a : args) {

i f (a i s a l o c a l v a r i a b l e) {
d e f s = getReachingDefs (a , mc) ;
i f (d e f s are a l l o f the form a = new) {

i f (no l i v e uses o f a except c a l l mc
&& a c y c l e from mc −> mc does not e x i s t

a long which a i s not r e d e f i n e d) {
a . handover = true ;

}
}

}
}

}
}

}

Figure 5.9: Pseudocode for our handover detection algorithm that detects the subtle case
of when a prospective handover-object is passed to multiple callees and so is actually not a
handover.

from the method call mc to itself along which the argument a is not redefined. If such a cycle

exists then we conclude that it is not a handover.

Allowing benign uses

Our definition of handover currently requires that the object being passed is not accessed by

the creating object. However, we can relax this condition to allow the following benign uses:

• Calls to Thread.start() and Thread.join(), if the handover object is a Thread.

• Assignments to local variables.

5.1. Reducing the number of locks acquired 143

1 public class Driver extends Thread {
2 . . .
3 public Car car ;
4 . . .
5 }
6

7 public class Car extends Thread {
8 . . .
9 protected Locat ion l o c a t i o n ;

10 . . .
11 private Driver d r i v e r ;
12 . . .
13 }
14

15 car = new Car (new Locat ion (. . .) , . . .) ;
16 d r i v e r = new Driver (. . . , car , . . .) ;
17 . . .
18 car . s e tDr i v e r (d r i v e r) ; // handover po in t
19 Rotary . addCar (car) ;
20 . . .
21 d r i v e r . s t a r t () ;
22 car . s t a r t () ;
23 . . .
24 try { d r i v e r . j o i n () ; } catch (Exception e) { . . . } ;
25 try { car . j o i n () ; } catch (Exception e) { . . . } ;

Figure 5.10: Code fragment from the traffic benchmark, whereby a Driver thread object is
handed over to a Car instance and later has start and join called on it in the creating scope.

In the case of Thread objects, it is fine to allow calls to start and join because the state these

two methods modify is disjoint from the application-defined state in the derived class. Moreover,

these methods are designed to be called by a different thread and so perform synchronisation

internally. We also assume that atomic sections do not perform any threading operations

whatsoever (i.e. they would not call start or join). Figure 5.10 shows an exemplary code

fragment from the traffic benchmark where not making such a relaxation would otherwise

prevent us from detecting a handover. A pair of Thread-derived Car and Driver instances are

created. The Driver is handed over to the Car before both threads are started. There are only

two uses of the Driver instance: (1) when being passed to the Car and (2) when start is invoked

on it. Apart from this, there are no other uses and thus the call car.setDriver(driver) is a

handover. There is also a handover of the constructed Location object on line 15. Note, the

Car instance is shared by both the Rotary and the Driver and thus cannot be considered an

instance-local object by either.

144 Chapter 5. Minimising locking overhead

MyObj o1 = new MyObj () ;
MyObj o2 = o1 ;
MyObj o3 = new MyObj(o2) ;

Figure 5.11: Code fragment showing that local-to-local assignments are also benign for handover
detection.

Another use that we allow is assignment to a local variable. Figure 5.11 shows another example

code fragment. Here, an alias o2 of o1 is created and then passed to o3’s constructor. Although

o1 now has a second use statement o2 = o1, this is benign and does not affect it from being a

handover. Care has to be taken though to ensure that not only is o2 not used elsewhere but

also that o1 is not used, either of which would prevent the handover.

Our final extension to the handover detection algorithm incorporates allowing these two benign

uses. Local-to-local copies add some additional complexity because all checks have to be ex-

tended to the resulting aliases too. Furthermore, cycle detection must now look for a definition

of the form x = new, whereby x is the original argument a or an alias of a. Figure 5.12 contains

our final algorithm.

5.1.4 Class-local objects

In addition to instance-local objects, we also make the observation that sometimes objects

stored in static fields do not escape the class they are created in. Such objects are typically

also part of the implementation of the class but their scope spans all its instances. Recall from

Section 3.3 that accessing a static field f in class C (i.e. C.f), requires locking C’s corresponding

Class object, C.class.

For class-local objects, locks taken to protect accesses made within them are always dominated

by locks on the defining class. So in the previous example, if we were to access state within the

object C.f, locks on C.class and C.f would usually be acquired. Thus, in a similar fashion to

instance-local objects, they can both be protected by just acquiring a lock on C.class.

Figure 5.13 shows the Rotary class from the traffic benchmark. Here, there are three static

fields: carsList, roadSegments and collisionDetector that are initialised in the initRotary

5.1. Reducing the number of locks acquired 145

f indHandovers (methods) {
for (Method m : methods) {

c a l l s = method c a l l s in m
for (MethodCall mc : c a l l s) {

args = arguments passed to c a l l mc
for (Arg a : args) {

i f (a i s a l o c a l v a r i a b l e) {
(de fs , a l i a s e s) = getReachingDefsThroughCopies (a , mc) ;
i f (d e f s are o f the form a = new or x = y) {

i f (no l i v e uses o f a or a l i a s e s except :
1) c a l l mc , or
2) Thread . s t a r t ()/ Thread . j o i n () , or
3) l o c a l−to−l o c a l copy

&& a c y c l e from mc −> mc does not e x i s t
a long which a or a l o c a l var a l i a s i s
not a s s i gned a new ob j e c t) {

a . handover = true ;
}

}
}

}
}

}
}

getReachingDefsThroughCopies (l , stmt) {
lDe f s = getReachingDefs (l , stmt)
a l l D e f s = []
a l i a s e s = []
for each (lDef : lDe f s) {

i f (lDe f i s o f form l = m) {
mDefs = getReachingDefsThroughCopies (m, lDe f) ;
a l l D e f s += mDefs
a l l D e f s += [lDef]
a l i a s e s += [m]

}
else i f (lDe f i s o f form l = new) {

a l l D e f s += [lDef]
}
else {

// not a handover
return ([] , []) ;

}
}
return (a l lDe f s , a l i a s e s) ;

}

Figure 5.12: Pseudocode for the final version of our handover detection algorithm.

146 Chapter 5. Minimising locking overhead

public class Rotary {
. . .
stat ic protected Vector c a r s L i s t ;
. . .
stat ic public Vector roadSegments ;
. . .
stat ic public C o l l i s i o n D e t e c t o r c o l l i s i o n D e t e c t o r ;
. . .
stat ic public void i n i tRota ry () {

c a r s L i s t = new Vector () ;
roadSegments = new Vector () ;
c o l l i s i o n D e t e c t o r = new C o l l i s i o n D e t e c t o r () ;

}
. . .
stat ic public void addCar (Car car) {

atomic {
c a r s L i s t . add (car) ;

}
}

stat ic public void removeCar (Car car) {
atomic {

c a r s L i s t . remove (car) ;
}

}
. . .

}

Figure 5.13: Rotary class from the traffic benchmark. This class has three static fields, of
which carsList and roadSegments only refer to class-local objects.

5.1. Reducing the number of locks acquired 147

method. Furthermore, the addCar and removeCar methods add to and remove from carsList

respectively. In this example, the objects referred to by carsList and roadSegments are

never accessed outside the Rotary class and are therefore class-local. As a result, the atomic

sections in addCar and removeCar just need to be replaced with a write lock on C.class and

nothing more. On the other hand, collisionDetector is additionally accessed by the Driver

class and thus any accesses performed within it require locking all relevant state inside the

CollisionDetector instance.

Data flow analysis

To detect class-local objects, we perform an analysis very similar to that for finding instance-

local objects: our class-local objects analysis is also flow-insensitive and there are two escape

modes: Internal and External.

When an object is created, it is marked as being internal and may become external if:

• It is assigned to an instance field.

• It is passed as a parameter to a method.

• It is returned from a non-private method.

A static field may become external if:

• It is accessed from outside the class.

• It is assigned an external reference.

Initially, static fields are marked internal, instance fields are marked external and method

parameters are external. We model the return value as assignment to a special return variable

$r, which is initially internal for private methods and external for non-private methods. The

reference this is always internal. We model array lookups as instance field accesses.

148 Chapter 5. Minimising locking overhead

t[x = y] = Tm[x 7→ Tm(x) t Tm(y)][y 7→ Tm(x) t Tm(y)]

t[x = y.f] = Tm[x 7→ External]

t[x.f = y] = Tm[y 7→ External]

t[x = C.f] = Tm[x 7→ Tm(x) t TC(.f)] and
TC[.f 7→ TC(.f) t Tm(x)], if C is the current class
Tm[x 7→ External] and
TC[.f 7→ External], otherwise

t[C.f = y] = Tm[y 7→ Tm(y) t TC(.f)]
TC[.f 7→ TC(.f) t Tm(y)], if C is the current class
Tm[y 7→ External]
TC[.f 7→ External], otherwise

t[x = y[*]] = Tm[x 7→ External]

t[x[*] = y] = Tm[y 7→ External]

t[return x] = Tm[x 7→ Tm(x) t Tm($r)][$r 7→ Tm(x) t Tm($r)]

t[throw x] = Tm[x 7→ External]

Figure 5.14: Transfer functions for class-local object inference.

To keep the analysis simple, we take a much more conservative approach with detecting class-

local objects in comparison to instance-local objects. In particular, we assume that any assign-

ments to and from instance fields cause an object to become external. We also do not handle

utility methods, handovers or inner classes.

Figure 5.14 gives our transfer functions. Due to the similarity with our instance-local analysis,

we do not explain all the transfer functions but rather focus on the differences.

Static field accesses Static fields become external if they are accessed from outside the

class they are defined in. This is less conservative than assuming public static fields escape.

Furthermore, this differs from our instance-local analysis where field accesses of local objects

were still considered local. In the context of class locality, local means “from the same class.”

Instance field accesses We conservatively assume that assignments to instance fields makes

an object external. This prevents us from detecting cases such as:

x . f = new MyObj () ;
C. f = x . f ;

5.1. Reducing the number of locks acquired 149

Node n = new Node () ;
atomic {

n . next = null ;
}

Figure 5.15: An object allocated just before an atomic section is still locked.

Not dealing with such cases simplifies the analysis tremendously, as it means we do not have

to track the escape state of instance fields. Furthermore, this has been sufficient to find many

class-local objects.

Array accesses Similarly to instance field accesses, we also assume assigning to and from

an array element makes an object external. Again, this prevents us from having to track the

escape state of array elements and greatly simplifies the analysis.

5.1.5 Method-local objects

Our lock-inference analysis identifies objects that are allocated within atomic sections and does

not infer locks for them (see t[x = new]n in Figure 3.6). This is sound because while the atomic

section is executing, these new objects are not visible to other threads. However, if the new

object is allocated just before the atomic section, then we lock it, despite it again not being

visible yet to other threads. Figure 5.15 shows an example.

We perform an intraprocedural forwards flow-sensitive analysis to find such allocated objects.

We formulate the analysis as finding objects that are method-local, but its flow-sensitive nature

allows us to detect objects that are method-local at least up to the start of the atomic section

(i.e. an object could escape during or after an atomic section, but this does not matter because

we are only interested in what is method-local at the start of the atomic section). Our data

flow analysis propagates sets of variables that are found to escape the method. Escaping

could be caused by a method call, assignment of another escaping value, assignment to/from a

static field, returning from a method or throwing an exception. Figure 5.16 gives our transfer

functions. We now describe the interesting functions in turn:

150 Chapter 5. Minimising locking overhead

t[x = y] = λs.s \ {x} t {x | y ∈ s}
t[x = new or null] = λs.s

t[x = y.f] = λs.s t {x}
t[x = C.f] = λs.s t {x}
t[x.f = y] = λs.s t {y | x ∈ s}
t[C.f = y] = λs.s t {y}

t[x.f = new or null]n = λs.s

t[x = y[*]] = λs.s t {x}
t[x[*] = y] = λs.s t {y}

t[x[*] = new or null] = λs.s

t[return x] = λs.s t {x}
t[throw x] = λs.s t {x}

t[x = y.m(a1,...,an)] = λs.s t {x, a1, ..., an}

Figure 5.16: Transfer functions for our method-local objects analysis. The analysis tracks which
variables refer to objects that may escape the method.

x = y In this statement, the value of y is being assigned to x and so x and y are now aliases.

Hence, if y escapes then does x and our transfer function adds x to the input set s appropriately.

Note that x is first killed from s, as its value is being overwritten.

x = y.f Our analysis is very conservative and we do not track the escape state of fields and

thus just assume the worst case that they escape a method. This is reflected by unconditionally

adding x to the input set s. Note that we found this level of conservatism fine for detecting

all new object allocations that occur just prior to an atomic section in the programs we have

looked at. If necessary, the precision could be improved by maintaining per-field escape states

on a class-wide basis (as if a field escapes in one method then it has escaped in all methods).

x.f = y As mentioned previously, we assume that fields always escape a method. However,

if the receiver object does not escape, then no other method has a reference to it and thus no

other method can access the field yet. Hence, we only add y to the input set s if x escapes.

5.1. Reducing the number of locks acquired 151

1 MyObj x = new MyObj () ;
2 MyObj y = new MyObj () ;
3 MyObj z = new MyObj () ;
4 MyObj a = new MyObj () ;

5 atomic {
6 x . f = 1 ;
7 y . f = 1 ;
8 z . f = 1 ;
9 a . f = 1 ;

10 }

Locks: { x, y, z, a }

11 atomic {
12 y . f = 1 ;
13 a . f = 1 ;
14 }

Locks: { y, a }

15 atomic {
16 x . f = 1 ;
17 z . f = 1 ;
18 }

Locks: { x, z }

Figure 5.17: Example demonstrating the concept of dominator locks. Here, we have three
atomic sections that each access two of the shared objects x, y, z and a, with the locks inferred
for each atomic section written below it. We see that x dominates z and y dominates a. The
dominated locks do not need to be acquired. The final set of locks to take are underlined.

5.1.6 Dominators

So far we have shown how we identify instance- and class-local objects and avoid locking them.

The reason behind this is that all accesses to these objects are dominated by their enclosing

instance or class respectively. We now generalise this idea to find all locks dominated by some

other lock: a lock l1 dominates another lock l2 if whenever l2 is acquired then so is l1. This is

clearly a generalisation of the aforementioned analyses because in those scenarios, the lock on

the enclosing object or class is always acquired when the internal objects are locked.

Figure 5.17 shows an example of this more general notion of domination, comprising three

atomic sections. x, y, z and a are shared objects constructed in lines 1-4. The locks our current

lock-inference analysis infers are shown below each atomic section. We see that x dominates z

and y dominates a. As a result, neither z nor a need to be acquired and we can remove them.

The final locks that should be taken are underlined. Notice again how the dominated objects

are thread-shared but they are implicitly protected by another lock, in this case x for z and y

for a, so we can avoid locking them.

We now present our analysis for identifying dominated objects.

152 Chapter 5. Minimising locking overhead

Data flow analysis

In order to be able to perform this analysis, we need to know which locks are taken by each

atomic section. This requires firstly knowing which objects are accessed. However, we infer

lvalue expressions, which although resolve to concrete objects at run-time, do not tell us any-

thing at compile-time about which objects these are. For example, the first atomic section in

Figure 5.17, accesses the lvalues x, y, z and a, however, we do not know just from the lvalues

alone whether they refer to the same or different objects. We therefore need to employ Soot’s

points-to analysis to map lvalue expressions to abstract objects.

One complication that arises with abstract objects, is that they could correspond to several

objects at run-time. This happens when the associated allocation site is executed multiple

times. Thus, even if we find that the abstract object ô1 is always locked when abstract object

ô2 is, i.e. that ô1 dominates ô2, written ô1 � ô2, it might be the case that at run-time, this

does not hold (because they may correspond to different pairs of concrete objects on different

executions). However, if we can show that ô1 refers to only a single unique run-time object,

then that would mean that the same lock was acquired regardless of what concrete object ô2

was. Hence, a requirement for ô1 � ô2 to hold is that ô1 can only resolve to a single unique

run-time object.

Figure 5.18 gives our algorithm for finding dominators and dominated locks. We now describe

the different stages involved. Note that for ease, we first calculate which abstract objects are

dominated and then use this information to find dominated locks. Hence, all data structures

used by our analysis store abstract objects and not locks. The algorithm starts by assuming

that abstract objects that resolve to a single run-time object dominate all other objects. We

employ Soot’s built-in run-once-run-many analysis that determines for each program statement,

whether it is executed once or may execute multiple times. We then use this to check if an

allocation site is only executed once. If so, then that allocation site only creates a single object

at run-time and we treat it as a potential dominator. All remaining objects are initially assumed

to be potentially dominated by these dominators. Building this initial approximation is shown

in lines 4-20. The dominatedToDominators relation maps an object to the set of objects that

5.1. Reducing the number of locks acquired 153

1 dominatedToDominators : AbsObject −> P(AbsObject) ;
2 dominatedToDominator : AbsObject −> AbsObject
3

4 // Step 1 : Bui ld i n i t i a l approx . o f dominated −> dominators r e l a t i o n .
5 // Po t en t i a l dominators are those a b s t r a c t o b j e c t s t ha t r e f e r to a
6 // s i n g l e unique run−t ime o b j e c t . A l l o b j e c t s are i n i t i a l l y dominated
7 // by a l l p o t e n t i a l dominators .
8 dominatedToDominators = { }
9 for each atomic s e c t i o n a {

10 potent ia lDominators = potent ia lDominated = { }
11 for each lock l o f a {
12 ob j s = pointsToSetOf (l) ;
13 add ob j s to potent ia lDominated
14 i f (ob j s i s a s i n g l e unique ob j e c t o)
15 add o to potent ia lDominators
16 }
17 for each obj o in potent ia lDominated {
18 add potent ia lDominators to dominatedToDominators [o]
19 }
20 }
21

22 // Step 2 : Fixed po in t c a l c u l a t i o n . I t e r a t e through each atomic s e c t i on
23 // and each ob j and remove i n v a l i d dominators from dominatedToDominators
24 while the re i s a change {
25 for each atomic s e c t i o n a {
26 ob j s = pointsToSetsOf (l o c k s o f a)
27 for each dominated −> dominators mapping in dominatedToDominators {
28 for each d in dominators {
29 i f d i s not in ob j s {
30 // d i s not acqu i red in t h i s atomic
31 remove d from dominators
32 }
33 }
34 }
35 }
36 }
37

38 // Step 3 : Each l o c k i s dominated by at most one dominator l o c k
39 dominatedToDominator = { }
40 for each dominated −> dominators mapping {
41 dominator = pick f i r s t dominator in dominators
42 dominatedToDominator [dominated] = dominator
43 }
44

45 // Step 4 : Mark dominated l o c k s
46 for each atomic s e c t i o n a {
47 for each lock l in a {
48 ob j s = pointsToSetOf (l)
49 l . dominated = areAllObjsAreDominated (ob j s)
50 }
51 }

Figure 5.18: Algorithm for finding dominators.

154 Chapter 5. Minimising locking overhead

dominate it.

The next stage is to refine this initial approximation, repeatedly removing invalid dominators

until we reach a fixed point. Recall that lock l1 dominates l2 if whenever l2 is locked then so

is l1. Thus, we iterate through each object that is locked for each atomic section. We find its

current set of dominators and check if they are all also locked by the current atomic section.

Those that are not are removed from the set. This process continues until there are no more

changes to the dominatedToDominators relation. This step is shown in lines 22-36.

It is possible that an object may have multiple dominators. Thus, the third stage, shown in

lines 38-43, is to map each dominated object to a single dominator. For example, object o may

have dominators d1 and d2. This means that d1 and d2 will both be locked whenever o is. We

could leave them as is, but by identifying only one as the dominator of o, we leave open the

possibility that the others may also be dominated. The dominatedToDominator relation maps

each dominated object to its single dominator.

The final step of the algorithm is to use the information computed about what abstract objects

are dominated to determine the dominated locks. An lvalue expression may resolve to multiple

abstract objects, however, as long as all of them are dominated we can conclude that the lvalue

expression will point to a dominated object and thus the corresponding lock does not need to

acquired. This step is shown in lines 45-51.

Read/write locks

Our lock-inference analysis makes a distinction between read and write locks. This adds a

complication to the dominator analysis if a write lock wl is dominated by a read lock rl. Given

that wl will not be acquired, race conditions may ensue. To rectify this, we must upgrade the

dominator rl to a write lock. We extend the algorithm in Figure 5.19 to perform this.

We first find out for each object, whether it is ever write locked. This is stored in the relation

objectToWrite. We then build a mapping from dominators to the objects they dominate and

iterate to find read-locked objects that dominate write-locked ones. These are the dominators

5.1. Reducing the number of locks acquired 155

1 // Step 5 : I f a read l o c k dominates a wr i t e lock , the
2 // dominator shou ld be upgraded to a wr i t e l o c k .
3

4 // Step 5a : b u i l d AbsObject −> i sWri te r e l a t i o n
5 objectToWrite : AbsObject −> Boolean
6 objectToWrite = { }
7 for each atomic s e c t i o n a {
8 for each lock l in a {
9 ob j s = pointsToSetOf (l)

10 for each obj o in ob j s
11 objectToWrite [o] |= l . i sWr i te () ;
12 }
13 }
14

15 // Step 5b : b u i l d dominator −> dominated r e l a t i o n
16 dominatorToDominated : AbsObject −> P(AbsObject)
17 dominatorToDominated = { }
18 for each (dominated , dominator) in dominatedToDominator
19 add dominated to dominatorToDominated [dominator]
20

21 // Step 5c : f i nd dominators t ha t are on ly read but t ha t dominate o b j e c t s
22 // wr i t t en to
23 dominatorsToUpgrade = { }
24 for each dominator −> dominated mapping in dominatorToDominated {
25 i f (! objectToWrite [dominator]) { // dominator i s on ly read
26 for each d in dominated {
27 i f (objectToWrite [d]) {
28 // dominated o b j e c t i s wr i t e l o cked
29 add dominator to dominatorsToUpgrade
30 }
31 }
32 }
33 }
34

35 // Step 5d : f i nd the corresponding dominator l o c k s t ha t need to
36 // be upgraded .
37 for each atomic s e c t i o n a {
38 for each lock l in a {
39 ob j s = pointsToSetOf (l)
40 i f non−empty i n t e r s e c t i o n o f ob j s with dominatorsToUpgrade {
41 upgrade l to a wr i t e l ock
42 }
43 }
44 }

Figure 5.19: Extension to our basic algorithm for finding dominators (see Figure 5.18) that
handles read locks dominating write locks. In this case, the dominator must be upgraded to a
write lock to prevent race conditions from ensuing.

156 Chapter 5. Minimising locking overhead

that need to be upgraded. Finally, we find the locks corresponding to these dominators and

replace them with write locks.

5.1.7 Read-only locks

We distinguish between read and write locks, to allow multiple readers of an object to be able

to proceed in parallel. However, if an object is never written to, then acquiring even a read lock

is unnecessary. The same also applies to type locks: if a type lock is only ever acquired in read

mode, then it does not need to be locked at all. The interesting bit comes when we consider the

cross dependencies between types and instances due to the multi-granularity locking protocol.

In particular, a read-only object not only requires that it is never write locked but also that

its type is not either. Similarly, a read-only type lock additionally requires that none of its

instances are ever write locked. We present our algorithm for finding read-only instance and

type locks in Figure 5.20. It consists of two steps, which we now describe.

Knowing whether a write lock is ever acquired on an object or type, requires looking across all

atomic sections. Recall from our dominators analysis that we need to use abstract objects to

approximate what lvalue expressions resolve to at run-time. These abstract objects also give

us the corresponding run-time type of the object, allowing us to perform the cross-dependency

checks described above. The first step of our analysis iterates through each lock of each atomic

section and records which abstract objects and types are write locked. This is stored in the

objectToWrite and typeToWrite maps respectively.

Having identified what is write locked, we can then proceed to actually find which locks are

read only. In the second step of the analysis, we again iterate through each lock l of each atomic

section. If l is an instance lock, we check that none of the abstract objects it could resolve to,

or their corresponding types, are write locked. On the other hand, if l is a lock on type t, we

check that t and its instances are only ever read locked.

5.1. Reducing the number of locks acquired 157

1 objToWrite : AbsObject −> Boolean
2 TypeToWrite : Type −> Boolean
3

4 // Step 1 : b u i l d objToWrite and typeToWrite r e l a t i o n s
5 objToWrite = { }
6 TypeToWrite = { }
7 for each atomic s e c t i o n a {
8 for each lock l in a {
9 i f l i s an in s t anc e lock {

10 ob j s = pointsToSetOf (l)
11 for each obj in ob j s {
12 objToWrite [obj] |= l . i sWr i te ()
13 }
14 } else { // l i s a type l o c k
15 type = get type locked by l
16 typeToWrite [type] |= l . i sWr i te ()
17 }
18 }
19 }
20

21 // Step 2 : f i nd in s tance and type l o c k s t ha t are read−only
22 for each atomic s e c t i o n a {
23 for each lock l in a {
24 i f (l i s an in s t ance lock) {
25 ob j s = pointsToSetOf (l) ;
26 i f (no obj in ob j s i s wr i t e locked) {
27 types = runTimeTypesOf (ob j s)
28 i f (no type in types i s wr i t e locked) {
29 l . readOnly = true ;
30 }
31 }
32 }
33 else {
34 type = get type locked by l
35 boolean readOnly = ! typeToWrite [type] ;
36 i f (readOnly) {
37 for each obj in objToWrite . keys {
38 i f (objToWrite [obj]) {
39 objType = get run−time type o f obj
40 i f (objType == type) {
41 readOnly = fa l se ;
42 }
43 }
44 }
45 }
46 l . readOnly = readOnly ;
47 }
48 }
49 }

Figure 5.20: Algorithm for finding read-only instance and type locks.

158 Chapter 5. Minimising locking overhead

5.1.8 Unnecessary intentional locking

We use the multi-granularity locking discipline of Gray et al. [GLP75] to simultaneously sup-

port both instance locks and type locks. Before attempting to acquire an instance lock, the

corresponding type lock must be acquired in intentional mode, indicating that a lock lower in

the hierarchy (in this case the instance lock) is to be acquired. If the type lock has already

been acquired, then the request will be refused or the thread will block. Once accepted, an

attempt to lock the instance can then be done with blocking being performed again if it is not

available. This protocol ensures lock arbitration between types and instances and is the crux

of how multi-granularity locking works. However, notice that if a type lock is never acquired,

then its instances do not first need to check whether the type has been acquired in a conflicting

mode or not. Lock requests on an instance can immediately proceed to try and acquire the

instance lock. We statically identify when this is the case and elide intentional locking on type

locks. Our analysis maps each instance lock to all possible run-time types of the objects it

could resolve to and checks if any of those types are ever locked. If none are, then the instance

lock will not perform intentional locking on its parent type lock.

5.1.9 Lock elision for single-atomic execution

In Section 5.1.1, we described how we dynamically elide locks when only a single application

thread currently exists. An extension of this, is to elide locks when only one thread is executing

inside an atomic section (regardless of the number of application threads that exist). As we

only guarantee weak isolation, locks need to be taken just when multiple atomics are executing

in parallel. Thus, if we know that only one thread is currently executing inside an atomic, we

do not need to acquire any locks. However, care has to be taken because a thread T2 could

enter an atomic section while the current thread T1 is executing with locks elided. In this case,

T2 would have to wait until T1 exited its outermost atomic section. This could be implemented

using an additional read/write lock that is normally acquired in read mode but is acquired in

write mode when locks are elided.

5.2. Lock implementation 159

H

b1 b2

a1 a2 a3 a4 a5 a6

Figure 5.21: Bank account example structured into multiple branches.

We have not implemented this optimisation but feel that it would benefit workloads that mostly

perform local computation and have a small shared portion. It may also benefit workloads that

are irregular.

5.2 Lock implementation

Having presented analyses to reduce the number of locks inferred, we now look at the per-

formance of our locks themselves. This is important because the conservative nature of lock

inference means that the number of inferred locks will inevitably be high. Each lock acquisition

and release adds additional overhead, so it is important to make them as efficient as possible.

Furthermore, most production-quality lock implementations are highly optimised [BKMS98,

RD06, Lea05], so for lock inference to be able to compete against manually-inserted locks, we

must ensure that our locks are as fast as possible.

5.2.1 Multi-granularity locking protocol

Before describing our optimised lock implementation, it is necessary to first understand how

they abstractly work. Recall that our lock-inference approach uses the multi-granularity locking

discipline of Gray et al. [GLP75] to have both instance locks and type locks.

To illustrate how multi-granularity locks work, we present a modified version of the famous

bank account example, comprising a bank having a number of branches that in turn have a

number of accounts. Figure 5.21 shows an example bank H, in which there are two branches b1

and b2 with three accounts each. We assume that each node in the graph has a lock associated

160 Chapter 5. Minimising locking overhead

X

SIX

S IX

IS

IS IX S SIX X
IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N

SIX Y N N N N
X N N N N N

(a) (b)

Figure 5.22: (a) Lock-mode lattice and (b) compatibility matrix for the multi-granularity lock-
ing discipline of Gray et al. [GLP75]. The compatibility matrix shows which lock modes can
be acquired concurrently by different threads.

with it. If we were using normal single-granularity locks and wished to sum the balances of

all accounts in branch b2, we would first acquire a read lock on H, followed by branch b2 and

finally on all account objects in b2 (i.e. a4, a5 and a6). The summation operation should be

atomic and so all accounts must be locked to prevent concurrent modifications, however, if the

number of accounts is large, this will result in a lot of lock acquisitions.

What is actually occurring here, is that data are being accessed at the granularity of a branch.

Multi-granularity locks allow the entire branch b2, including all its accounts, to be locked by

acquiring only b2’s lock. Note, acquiring the multi-granularity lock on an account has the same

behaviour as in the single-granularity lock case (as there are no child nodes). In general, multi-

granularity locks can be acquired in either shared (S) or exclusive (X) mode, each of which

implicitly locks all child nodes in the same mode.

Given the hierarchical nature of multi-granularity locks, care has to be taken to ensure that an

ancestor node has not already been locked in a mode that is incompatible, such as when trying

to acquire the S lock on b1 when H’s X lock has already been acquired by another thread. To

prevent this, two additional modes are used: intention shared (IS) and intention exclusive (IX),

which indicate that S or X locking is to be performed respectively further down the hierarchy.

For example, before acquiring the S lock on b2, the IS lock has to be acquired on H. As another

example, suppose we wish to perform a deposit on account a5 and thus require acquiring a5’s

X lock. In this case, we would first acquire the IX lock on H, then the IX lock on b2 and then

the X lock on a5. Figure 5.22(a) gives the partial ordering of the different lock modes and

5.2. Lock implementation 161

Figure 5.22(b) shows which modes can be simultaneously granted to distinct threads.

Note, an additional mode called Shared Intention Exclusive (SIX) is also used to achieve more

concurrency in the common case where a thread may read many nodes in a sub-tree but only

write to a few. Normally, the thread would need to acquire the X lock on the sub-tree but

this is overly conservative, as it prevents concurrent threads from performing reads lower down.

Please refer to [GLP75] for the full details of multi-granularity locks.

We now describe our optimised implementation of these locks.

5.2.2 The Synchronizer framework

In Java, production-quality locks are built using the Synchronizer framework [Lea05]. This is

part of the java.util.concurrent Java Concurrency library and provides common mechanics

for atomically managing synchronisation state, blocking and unblocking threads, and queuing.

Synchronisation state is represented using a single 32-bit integer value and queues are non-

blocking. All state updates are performed using CAS. All these behaviours are encapsulated in

the base class AbstractQueuedSynchronizer (abbreviated to AQS).4 AQS internally supports

the two modes shared and exclusive, however, the framework is flexible as to how a custom

synchroniser’s specific modes map to them. To implement a custom synchroniser, the AQS class

is extended and the tryAcquire, tryRelease, tryAcquireShared and tryReleaseShared

methods are overriden.

Multi-granularity locks have five modes they can be acquired in: exclusive (X), shared (S),

intention shared (IS), intention exclusive (IX) and shared intention exclusive (SIX) (see Sec-

tion 5.2.1). Note, SIX can be implicitly represented by non-zero counts for both S and IX,

hence we only explicitly represent the four modes X, S, IS and IX, allocating 16 bits for each of

their counts (we use AbstractedQueuedLongSynchronizer). This allows up to 65535 reentrant

acquires in each mode. We map X to exclusive and the remaining three modes (S, IS, IX) to

shared. The disambiguation of the latter three modes is made in the tryAcquireShared and

4There is also a long version, called AbstractQueuedLongSynchronizer, that uses 64-bits for state.

162 Chapter 5. Minimising locking overhead

1 for (int i =0; i<MAX POLL; i++) {
2 i f (l . tryLock ()) {
3 . . . proceed with lock a c q u i s i t i o n s . . .
4 }
5 for (int j =0; j<WAIT BETWEEN POLLS; j++) { }
6 }

Figure 5.23: When a lock is not available, we poll it a few times first before rolling back the
locking phase.

tryReleaseShared methods.

We also extend the Thread class to store how many times the current thread has acquired the

lock in each mode. This makes thread-local lookups much faster than using ThreadLocal, as

the latter performs a hash table lookup.

5.3 Deadlock

The final cause of run-time overhead we have found, is due to our deadlock-avoidance scheme.

Every time an acquisition on some lock l fails, we essentially rollback the locking phase and

reacquire all locks. We do this by releasing all already-acquired locks that precede l before

blocking and waiting for l to become available. When this eventually occurs, we immediately

release l and then reacquire all locks from the start. We also employ an exponential backoff to

minimise the chance of livelock from occurring. Section 3.4 describes our approach. However,

the overhead that arises from blocking until l becomes available and for the backoff can be

costly. Furthermore, much of the time, locks become available shortly after tryLock returns

false. Thus, rather than being overly conservative and assuming that a deadlock may have

occurred at the first failure to acquire a lock, we poll the lock a few times first before rolling back.

Figure 5.23 shows our loop for polling on l. This adaptive scheme has improved performance

tremendously, as we shall see in our evaluation.

5.4. Evaluation 163

5.4 Evaluation

We now evaluate our various optimisations for reducing the number of lock operations, our

optimised lock implementation and our improved deadlock-avoidance algorithm. So far, we

have been able to analyse very large amounts of code but the resulting performance has been

poor. The motivation of this chapter has been to find techniques to improve this performance.

We now show that through the optimisations described in this chapter, we have been able to

get performance very close to that of the original locking policy in our chosen benchmarks.

Due to our analysis optimisations in Chapter 4, we can now analyse our benchmarks on the

commodity machine liatris. However, hsqldb’s memory requirements remain high so we still

analyse it on ax3. Furthermore, we assume the use of the optimised lock implementation and

deadlock-free lock acquisition loop.

Figure 5.24(a) shows the number of locks inferred by our analysis both with and without all

the lock optimisations from Section 5.1. Moreover, Figure 5.24(b) shows a breakdown of how

many locks are reduced by each individual optimisation. Figure 5.25 shows the analysis times

of each individual optimisation.

Our optimisations are successful in significantly reducing the number of lock operations. For

example, in the case of hsqldb, there is a 75% reduction and in the case of mtrt, 94%.

In the breakdown, we find that the optimisation that removes the largest number of locks

varies between the benchmarks. However, for benchmarks with very large numbers of locks, it

appears that the dominators analysis is most successful. The reason for this might be because

of large numbers of common code paths and thus large numbers of common locks between

atomic sections.

Most impressive are the run times shown in Figure 5.26. We see that by reducing the number

of lock operations, the run-time performance has drastically improved. Most notably, is that

of hsqldb: from 160x slower to just 3.5x slower - an improvement factor of 45. Furthermore,

we see slight speed ups in the sync and bank benchmarks.

164 Chapter 5. Minimising locking overhead

Program

(i) Halpert Ours

Static Dynamic
(ii) No lock opt. (iii) With all lock opt.

Inst. Type Inst. Type
R W R W R W R W

sync 0 2 1 2 0 0 0 2 0 0
pcmab 0 3 1 5 0 0 0 2 0 0
bank 0 3 0 12 0 0 0 6 0 0
traffic 0 19 33 67 0 0 11 18 0 0
mtrt 1 0 905 268 726 130 0 48 6 66

hsqldb 2 11 32508 24956 26429 10943 1725 4155 9792 8301
(a)

Program
(i) TLO (ii) ILO (iv) CLO (vii) MLO (iii) DOM (v) RO (vi) UIL

Inst. Type Inst. Type Inst. Inst. Type Inst. Inst. Type Inst.
R W R W R W R W R W R W R W R W R W R W R W

sync 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2
pcmab 0 1 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5
bank 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 12
traffic 0 1 0 0 4 41 0 0 1 6 0 2 0 0 1 0 31 0 0 0 31 49
mtrt 52 5 24 20 92 57 24 60 119 6 0 0 0 0 491 204 613 0 702 0 560 63

hsqldb 464 6045 492 450 2352 3315 1682 2552 4951 487 0 0 0 0 19775 13780 17948 0 15672 0 15070 2276
(b)

Figure 5.24: Locks inferred for benchmarks in Figure 3.19 by Halpert et al. (a)(i) and our
approach for both without (a)(ii) and with all our lock optimisations enabled (a)(iii). A break-
down of how many locks are removed by each optimisation is given in (b).

Program
Lock optimisations (secs)

TLO ILO CLO MLO DOM RO IMP
sync 0.598 8.441 3.979 0.0010 1.42 0.0010 0.0

pcmab 0.603 8.309 3.855 0.0020 1.444 0.0010 0.0
bank 0.408 8.177 3.802 0.0020 1.376 0.0020 0.0010
traffic 0.569 9.267 3.861 0.465 1.625 0.0060 0.0020
mtrt 0.623 9.063 4.259 0.0050 1.741 0.079 0.03

hsqldb 1.667 28.589 53.125 0.079 9.597 1.84 2.724

Figure 5.25: Analysis time breakdown for each lock optimisation.

Program
Run-time (secs)

Manual Global Halpert Ours (w/o lock opts.) Ours (w/ lock opts.)
sync 69.14 71.22 72.69 74.61 56.61

pcmab 2.28 3.15 2.28 12.47 2.47
bank 20.89 19.50 35.69 30.88 3.88
traffic 2.56 4.22 2.65 91.42 4.42
mtrt 0.80 0.82 0.78 0.95 0.85

hsqldb 3.25 3.12 3.25 500 11.39

Figure 5.26: Comparison of execution times for each benchmark, when executed with its original
locking policy (manual), a single global lock protecting each atomic (global), locks inferred by
Halpert et al. and our approach both with all lock optimisations disabled and with all lock
optimisations enabled.

5.5. Conclusion 165

5.5 Conclusion

Despite having a highly scalable analysis, we found that the number of locks we were inferring

were too high. This is because we assumed that all object accesses need to be locked. This

negatively impacted performance as we had slowdowns of up to 160x on the hsqldb benchmark.

The reason for the bad performance was due to three things: too many locks being inferred, an

inefficient lock implementation and too much blocking when acquiring locks. In this chapter,

we have presented several techniques to deal with them.

To reduce the number of locks, we have presented analyses for identifying thread-local, instance-

local, class-local, method-local, dominators and read-only locks. We also identify when it is

not necessary to acquire multi-granularity locks in intentional mode and when it safe to elide

locks completely. Our optimised multi-granularity lock implementation is built using Java’s

Synchronizer framework and we reduce context-switch overhead in our locking acquisition code

by polling locks for a short period.

Our analyses are very fast and our results show that we gain up to 94% reduction in the number

of locks. More impressive is the execution time improvements of the resulting instrumented

programs. We obtain performance very similar to the original locking policy of the benchmark.

In the case of hsqldb, our performance improves from a 160x slowdown to now just a 3.5x

slowdown.

What we have achieved is a sound, scalable analysis that is able to handle large Java programs

making use of libraries and containing atomic sections involving I/O and system calls. Our

approach infers a reasonably efficient set of locks whose resulting performance is close to the

original locking policy. This is the first lock-inference approach to achieve this.

166 Chapter 5. Minimising locking overhead

Chapter 6

Conclusion

6.1 Summary of thesis achievements

6.1.1 Recap of motivation

Atomicity provides strong guarantees against errors caused by unanticipated thread interac-

tions. However, manually enforcing atomicity is error-prone and sometimes not even possible.

As a result, a programming abstraction has been proposed, called atomic sections that allow a

programmer to declaratively mark a block of code as executing atomically and leave the details

of how this is achieved to the compiler and/or run-time.

Atomic sections are a language-level abstraction and thus the question of how to actually

implement their semantics has been a very important research question for the last 10-15 years.

Transactional memory has been the most popular technique, in which memory updates are

buffered during executed and committed in a single step at the end, provided no conflicting

updates have been performed by a concurrent thread. If there has been, then the buffered

updates are discarded and the atomic section is reexecuted. While it has the advantages of

scalable performance, transactional memory suffers from high execution overhead due to logging

and rollback but more importantly is unable to handle irreversible operations such as I/O and

system calls. As a result, the expressivity of atomic sections is called into question.

167

168 Chapter 6. Conclusion

Lock inference is an alternative technique that statically infers the locks that need to be acquired

to ensure atomic execution and instruments them into the program. It is pessimistic in nature,

as locks are acquired on shared objects before they are accessed, but this enables it to support

irreversible operations. That is the reason why we have decided to pursue lock inference in

this thesis. However, although expressivity is now restored, we have found through the very

simple “Hello World” atomic section (see Section 1.6) that even small programs rely on very

large parts of the library. Thus, for a lock-inference approach to be able to handle even small

real-world programs, it needs to be able to scale to the library. This is problematic because

all prior work has shied away from tackling the library. They either (i) ignore it, (ii) require

library implementors to annotate which locks to take or (iii) analyse library call chains only up

to one-level deep. All of these approaches may result in accesses remaining unprotected.

The reason why lock inference has avoided libraries is because they are notoriously known to be

a challenge for static analysis, due to (i) their high cyclomatic complexity, (ii) their generality

and (iii) the lack of available source code for them. Therefore, the motivation for this thesis,

has been to tackle this scalability problem and more generally argue the following:

It is possible to develop lock-inference techniques that scale to real-world Java programs that

make use of the library and still obtain performance comparable to manually-inserted locking.

6.1.2 Achievements

We believe that this is the first lock-inference approach that can precisely analyse Java programs

built with large libraries and achieve performance similar to that of manually-inserted locking:

• We are able to handle library programs by formulating our previous object-access inference

analysis [CGE08] as an IDE data flow problem. We refine the pointwise representations

of Sagiv et al. [SRH96, RSX08] and show that our analysis can scale to the entire GNU

Classpath library (122KLOC).

• We have presented a number of analysis optimisations, namely: CFG summarisation,

delta propagation, worklist ordering and parallel propagation, which in turn we have

6.1. Summary of thesis achievements 169

evaluated. These optimisations enable us to scale to very large code bases, such as the

large Java database engine hsqldb, comprising 150KLOC (plus 3000 library methods from

GNU Classpath). Most notable of these optimisations, is our novel delta transformers

that dramatically reduce analysis time and memory requirements.

• We have also implemented several analyses to identify and eliminate locks inferred for:

thread-local, instance-local, class-local, method-local, dominated and read-only objects.

We also dynamically elide locks for atomic sections when there is only a single thread

executing in the application. All our analyses are completely automatic and do not require

any programmer annotations. Our lock-inference approach is the first to automatically

identify instance- and class-local objects as well as the more general notion of dominated

locks and elide them at compile-time. Furthermore, these analyses are conservative but

scale to library code and are still able to identify many such objects. We evaluate their

effectiveness on a suite of benchmarks. We also present an efficient implementation of

Gray et al. [GLP75]’s multi-granularity locks using Lea’s Synchronizer framework [Lea05].

Finally, we optimise our deadlock-free lock-acquisition loop by polling locks for a short

while prior to blocking on them.

• We present a full implementation of all our analyses in the Soot framework and evaluate

them on the motivating “Hello World” program as well as GNU Classpath and a suite

of benchmark programs. We show that with our techniques, we are able to achieve

performance very close to the original locking policies, with a maximum of 3.5x slowdown

on hsqldb. This is an important achievement, as we provide the programming model

of using a single global lock, but performance that is close to expert, manually-inserted

locks. We compare results with Halpert et al. [HPV07]. They only analyse library call

chains up to one-level deep. For benchmarks that involve little library code, we obtain

similar performance but for programs that make extensive use of the library, we are slower.

However, our approach analyses all library code and is therefore sound, whereas it can be

shown that Halpert et al.’s approach can produce unsound results (see Section 2.5.2).

170 Chapter 6. Conclusion

6.2 Future work

In this section, we identify possible future directions of work.

6.2.1 Cold code paths

Lock inference relies heavily on static analysis to identify a suitable set of locks for atomicity.

As static analysis is done at compile-time, the results it computes must cover all possible exe-

cutions of the program to ensure safety. Some program paths are not executed very frequently

because they may cover special cases (e.g. exception handlers), however, static analysis has

to conservatively assume that because there is a possibility that they can be executed, locks

must be inferred to protect their accesses. However, these locks are only required in certain

situations and thus acquiring them on every execution of the atomic section adds unnecessary

lock contention and overhead.

One area of future work is to differentiate such cold code paths from the frequently executed

ones and defer acquiring the former’s locks until absolutely necessary. So, locks for normal

code could be acquired as usual at the start of the atomic section but locks protecting accesses

made along cold code paths would be acquired at the start of the cold region. Figure 6.1 shows

an example to illustrate how this could work. Figure 6.1(a) shows a try-catch block inside

an atomic section. Currently, our analysis would infer the locks as shown in Figure 6.1(b),

however, note that the lock on y is only necessary if the catch block is executed, which is rare.

What we propose is to treat the exception handler as cold code and thus defer locking y to

the point where it is executed, i.e. the start of the catch block. This still ensures safety as y

is locked before being accessed but it reduces the number of locks that are initially acquired.

The resulting locking policy is shown in Figure 6.1(c).

This kind of technique is especially useful when library code is involved, because the library is

specifically designed to be general purpose and cater for many possible usage contexts, many

of which are not executed frequently. For example, the character-set loading code that is

executed when a string is printed (see the “Hello World” example in Section 1.6) for the first

6.2. Future work 171

atomic {
try {

x . f = 1 ;
}
catch (Exception e) {

y . f = 10 ;
}

}

lockWrite (x) ;
lockWrite (y) ;
try {

x . f = 1 ;
}
catch (Exception e) {

y . f = 10 ;
}
f ina l ly {

unlockWrite (x) ;
unlockWrite (y) ;

}

boolean yLocked = fa l se ;
lockWrite (x) ;
try {

x . f = 1 ;
}
catch (Exception e) {

lockWrite (y) ;
yLocked = true ;
y . f = 10 ;

}
f ina l ly {

unlockWrite (x) ;
i f (yLocked) {

unlockWrite (y) ;
}

}
(a) (b) (c)

Figure 6.1: Example illustrating the concept of cold code paths and how they can be utilised
to optimise the locking policy.

time, does not execute the second time. Thus, on the second execution of the atomic section,

those corresponding locks do not need to be acquired. However, due to the conservative nature

of static analysis all these accesses have to be locked.

The conservativeness of static analysis is a universal problem and we believe that differentiating

cold code from common code paths is one useful way to improve the precision of analysis results

without losing soundness. How this soundness is maintained for cold code is analysis-dependent,

but in our case it would mean acquiring cold locks at the start of those code regions. To the

best of our knowledge, such a distinction has never been considered by prior work on static

analysis.

Identifying cold code paths

Cold code paths can be identified using profiling information about which bytecode instructions

and methods are executed. Care has to be taken to make sure that a reasonably extensive set

of inputs are used to prevent mistaking a common code path for a cold one. In a preliminary

exploration of this, we integrated the Emma1 code coverage tool into Jikes RVM so that we

1Available from http://emma.sourceforge.net

172 Chapter 6. Conclusion

could get a list of the methods that were called while the application executed. Although Jikes

RVM is able to provide this information, Emma gives very nice output in the form of html

files and maps the bytecode execution information back to the corresponding high-level Java

statements, making it easier to review. The results we obtained were very encouraging. For

example, we found that for hsqldb, only 2745 out of its 5062 call-graph methods (54%) were

executed.

Deadlock

By deferring acquisition of locks for cold code paths, locks are no longer all acquired at the

start of the atomic section. This means we can no longer simply rollback the locking phase, as

shared memory updates may have been performed.

To avoid deadlock, an analysis could be performed to identify which cold locks may be involved

in a deadlock and then push those specific locks to the top of the atomic section. Although some

cold locks will therefore be acquired on every execution, we believe that the number of deferred

locks will still be high. Figure 6.2(a) shows the try-catch atomic from Figure 6.1 together with

another conflicting try-catch atomic. We treat both exception handlers as cold code paths and

the resulting locking policy is shown in Figure 6.2(b). However, note that now locks x and y are

acquired in reverse orders and consequently a deadlock could result. To remedy this, we lock

x and y at the start of each atomic section, but as deferring the lock on z is still fine, we leave

its acquisition to the start of the catch block. The final fixed version is shown in Figure 6.2(c).

6.2.2 Eliminate type locks

Our lock-inference approach uses instance locks whenever possible and type locks for when our

analysis infers a statically unbounded set of accesses. Acquiring a lock on type t implicitly

acquires locks on all of t ’s instances. This can be too coarse, as in reality, only a fraction of

these instances need to be acquired. Hence, an important area of future work would be to

replace type locks with less-coarse locks.

6.2. Future work 173

atomic {
try {

x . f = 1 ; }
catch (Exception e) {

y . f = 10 ; }
}

atomic {
try {

y . f = 1 ; }
catch (Exception e) {

x . f = 10 ;
z . f = 10 ; }

}
(a)

boolean coldLocksTaken = fa l se ;
lockWrite (x) ;
try {

x . f = 1 ; }
catch (Exception e) {

lockWrite (y) ;
coldLocksTaken = true ;
y . f = 10 ; }

f ina l ly {
unlockWrite (x) ;
i f (coldLocksTaken)

unlockWrite (y) ; }

boolean coldLocksTaken = fa l se ;
lockWrite (y) ;
try {

y . f = 1 ; }
catch (Exception e) {

lockWrite (x) ;
lockWrite (z) ;
coldLocksTaken = true ;
x . f = 10 ;
z . f = 10 ; }

f ina l ly {
unlockWrite (y) ;
i f (coldLocksTaken) {

unlockWrite (x) ;
unlockWrite (z) ; } }

(b)

lockWrite (x) ;
lockWrite (y) ;
try {

x . f = 1 ; }
catch (Exception e) {

y . f = 10 ; }
f ina l ly {

unlockWrite (x) ;
unlockWrite (y) ; }

boolean coldLocksTaken = fa l se ;
lockWrite (x) ;
lockWrite (y) ;
try {

y . f = 1 ; }
catch (Exception e) {

lockWrite (z) ;
coldLocksTaken = true ;
x . f = 10 ;
z . f = 10 ; }

f ina l ly {
unlockWrite (x) ;
unlockWrite (y) ;
i f (coldLocksTaken) {

unlockWrite (z) ; } }
(c)

Figure 6.2: (a) is a program containing two atomic sections, both of which have exception han-
dlers that we consider to be rarely executed code. The transformed version where acquisitions
of locks for accesses made in cold code regions are deferred is shown in (b). As locks are no
longer all acquired together at the start of each atomic section, it is possible for deadlock to
occur. However, an additional analysis could be performed to identify exactly which deferred
locks may be involved in a deadlock and push these locks to the start of their respective atomic
sections, as shown in (c).

174 Chapter 6. Conclusion

6.2.3 Parallelism within atomic sections

Atomic sections are traditionally disallowed from spawning threads. However, in the future we

might envisage libraries internally using parallelism to perform their computations, especially

if we start seeing hundreds of cores in commodity processors. To be able to call such libraries

from within atomic sections, we would need to be able to support threads. This is known as

nested parallelism [AFS08] or parallel nesting [BDF+10] in the space of transactional memory.

However, it has not yet been considered for lock inference.

6.2.4 Hybrid with transactional memory

Another interesting area of future work is the combination of transactional memory and lock

inference into a single implementation of atomic sections. Transactional memory has very good

scalability but is unable to handle irreversible operations well. On the other hand, lock inference

has low overhead for when there is lots of contention and is able to handle I/O and system

calls. Thus, one possible hybrid implementation may use transactional memory by default and

then revert to using lock inference when it encounters I/O or if it finds that transactions are

rolling back excessively.

6.3 Closing remarks

From the outset, the goal of this PhD has been to be able to apply lock-inference on existing

real-world Java programs. Given the complexity of these programs, part of the work was to find

other tools and techniques to build on. In particular, the IDE analysis framework proved to be a

very good foundation upon which to design our object-access inference analysis, as the pointwise

representations of Sagiv et al. [SRH96] afforded an efficient implementation. Furthermore,

Soot was perfect for implementing our analyses, as it provided the necessary framework and

supporting analyses. Our implementation would not have been possible without it. Finally, we

also wanted to be able to experiment with modifying the run-time, to make it cheap to lookup

6.3. Closing remarks 175

a lock for an object as well as store and retrieve thread-local data. Jikes RVM provided us with

not only a Java VM that was able to run all our benchmarks but also the ability to experiment

in this way. The advantage of having implemented our techniques in such tools is that they

can then be used and furthered by others.

176 Chapter 6. Conclusion

Bibliography

[AAB+05] Bowen Alpern, Steven Augart, Stephen M. Blackburn, Maria Butrico, Anthony

Cocchi, Perry Cheng, Julian Dolby, Stephen Fink, David Grove, Michael Hind,

Kathryn S. McKinley, Mark Mergen, J. Eliot B. Moss, Ton Ngo, and Vivek Sarkar.

The jikes research virtual machine project: building an open-source research com-

munity. IBM Syst. J., 44(2):399–417, January 2005.

[AAK+05] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson,

and Sean Lie. Unbounded transactional memory. In Proceedings of the 11th

International Symposium on High-Performance Computer Architecture, HPCA

’05, pages 316–327, Washington, DC, USA, 2005. IEEE Computer Society.

[ABH+09] Mart́ın Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael Isard.

Implementation and use of transactional memory with dynamic separation. In

Proceedings of the 18th International Conference on Compiler Construction, vol-

ume 5501 of Lecture Notes in Computer Science, pages 63–77, Berlin, Heidelberg,

Germany, 2009. Springer-Verlag.

[ADG+99] Ole Agesen, David Detlefs, Alex Garthwaite, Ross Knippel, Y. Srinivas Ra-

makrishna, and Derek White. An efficient meta-lock for implementing ubiqui-

tous synchronization. In Proceedings of the 14th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

’99, pages 207–222, New York, NY, USA, 1999. ACM.

177

178 BIBLIOGRAPHY

[AFS08] Kunal Agrawal, Jeremy T. Fineman, and Jim Sukha. Nested parallelism in trans-

actional memory. In Proceedings of the 13th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, PPoPP ’08, pages 163–174, New

York, NY, USA, 2008. ACM.

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT

Press, Cambridge, MA, USA, 1986.

[AHB03] Cyrille Artho, Klaus Havelund, and Armin Biere. High-level data races. Software

Testing, Verification and Reliability, 13(4):207–227, December 2003.

[AHM09] Mart́ın Abadi, Tim Harris, and Mojtaba Mehrara. Transactional memory with

strong atomicity using off-the-shelf memory protection hardware. In Proceedings

of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’09, pages 185–196, New York, NY, USA, 2009. ACM.

[AR05] C. Scott Ananian and Martin Rinard. Efficient object-based software transac-

tions. In Proceedings of the OOPSLA 2005 Workshop on Synchronization and

Concurrency in Object-Oriented Languages, SCOOL ’05, San Diego, CA, USA,

Oct 2005.

[Art01] Cyrille Artho. Finding faults in multi-threaded programs. Master’s thesis, ETH

Zürich, March 2001.

[BCF04] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions

for C#. ACM Trans. Program. Lang. Syst., 26(5):769–804, September 2004.

[BDF+10] João Barreto, Aleksandar Dragojević, Paulo Ferreira, Rachid Guerraoui, and

Michal Kapalka. Leveraging parallel nesting in transactional memory. In Pro-

ceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’10, pages 91–100, New York, NY, USA, 2010.

ACM.

[BGK+06] Brendan Burns, Kevin Grimaldi, Alexander Kostadinov, Emery D. Berger, and

Mark D. Corner. Flux: a language for programming high-performance servers. In

BIBLIOGRAPHY 179

Proceedings of the USENIX 2006 Annual Technical Conference, ATC ’06, pages

129–142, Berkeley, CA, USA, 2006. USENIX Association.

[BGMP79] Mike Blasgen, Jim N. Gray, Mike Mitoma, and Tom Price. The convoy phe-

nomenon. SIGOPS Oper. Syst. Rev., 13(2):20–25, April 1979.

[BKMS98] David F. Bacon, Ravi Konuru, Chet Murthy, and Mauricio Serrano. Thin locks:

featherweight synchronization for java. In Proceedings of the 1998 ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’98,

pages 258–268, New York, NY, USA, 1998. ACM.

[BLM05] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstructing

transactional semantics: The subtleties of atomicity. In Proceedings of the Fourth

Workshop on Duplicating, Deconstructing, and Debunking, WDDD ’05. June 2005.

[Boy04] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe Programming.

PhD thesis, MIT, February 2004.

[BSS+11] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Tam-

ing reflection: Aiding static analysis in the presence of reflection and custom class

loaders. In Proceedings of the 33rd International Conference on Software Engi-

neering, ICSE ’11, pages 241–250, New York, NY, USA, 2011. ACM.

[CA04] Bryan Chan and Tarek S. Abdelrahman. Run-time support for the automatic

parallelization of java programs. J. Supercomput., 28(1):91–117, April 2004.

[CCG08] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for atomic

sections. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’08, pages 304–315, New York, NY,

USA, 2008. ACM.

[CDE07] David Cunningham, Sophia Drossopoulou, and Susan Eisenbach. Universe types

for race safety. In Proceedings of the First International Workshop on Verification

and Analysis of Multi-Threaded Java-Like Programs, VAMP ’07, pages 20–51,

August 2007.

180 BIBLIOGRAPHY

[CGE08] David Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the grass:

locking the right path for atomicity. In Proceedings of the 17th International

Conference on Compiler Construction, volume 4959 of Lecture Notes in Computer

Science, pages 276–290, Berlin, Heidelberg, Germany, 2008. Springer-Verlag.

[CGS+99] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and

Sam Midkiff. Escape analysis for java. In Proceedings of the 14th ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA ’99, pages 1–19, New York, NY, USA, 1999. ACM.

[CJP07] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP: Portable

Shared Memory Parallel Programming. The MIT Press, 2007.

[CMC+06] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao

Minh, Christos Kozyrakis, and Kunle Olukotun. The atomos transactional pro-

gramming language. In Proceedings of the 2006 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’06, pages 1–13, New

York, NY, USA, 2006. ACM.

[Cun10] David Cunningham. Locking Atomic Sections. PhD thesis, Imperial College of

Science, Technology and Medicine, April 2010.

[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented

programs using static class hierarchy analysis. In Proceedings of the Ninth Euro-

pean Conference on Object-Oriented Programming, volume 952 of Lecture Notes

in Computer Science, pages 77–101, London, UK, 1995. Springer-Verlag.

[Dib08] Peter C. Dibble. Real-Time Java Platform Programming: Second Edition. Book-

Surge Publishing, 2nd edition, 2008.

[DM05] Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Jour-

nal of Object Technology, 4(8):5–32, October 2005.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proceedings

of the 20th International Conference on Distributed Computing, volume 4167 of

BIBLIOGRAPHY 181

Lecture Notes in Computer Science, pages 194–208, Berlin, Heidelberg, Germany,

2006. Springer-Verlag.

[EFJM07] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majumdar. Lock

allocation. In Proceedings of the 34th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL ’07, pages 291–296, New York, NY,

USA, 2007. ACM.

[EGLT76] Kapali P. Eswaran, Jim N. Gray, Raymond A. Lorie, and Irving L. Traiger. The

notions of consistency and predicate locks in a database system. Commun. ACM,

19(11):624–633, November 1976.

[Enn06] Robert Ennals. Software transactional memory should not be obstruction-free.

Technical Report IRC-TR-06-052, Intel Research Cambridge Tech Report, Jan-

uary 2006.

[FF04] Cormac Flanagan and Stephen N. Freund. Atomizer: a dynamic atomicity checker

for multithreaded programs. In Proceedings of the 31st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’04, pages 256–267,

New York, NY, USA, 2004. ACM.

[FFL05] Cormac Flanagan, Stephen N. Freund, and Marina Lifshin. Type inference for

atomicity. In Proceedings of the 2005 ACM SIGPLAN International Workshop

on Types in Language Design and Implementation, TLDI ’05, pages 47–58, New

York, NY, USA, 2005. ACM.

[FH07] Keir Fraser and Tim Harris. Concurrent programming without locks. ACM Trans.

Comput. Syst., 25(2), May 2007.

[FQ03a] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In

Proceedings of the 2003 ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’03, pages 338–349, New York, NY, USA, 2003.

ACM.

182 BIBLIOGRAPHY

[FQ03b] Cormac Flanagan and Shaz Qadeer. Types for atomicity. In Proceedings of the

2003 ACM SIGPLAN International Workshop on Types in Language Design and

Implementation, TLDI ’03, pages 1–12, New York, NY, USA, 2003. ACM.

[FQ04] Stephen N. Freund and Shaz Qadeer. Checking concise specifications for multi-

threaded software. Journal of Object Technology, 3(6):81–101, June 2004.

[FR02] Pascal Felber and Michael K. Reiter. Advanced concurrency control in java. Con-

currency and Computation: Practice and Experience, 14(4):261–285, April 2002.

[FR04] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In

Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing,

PODC ’04, pages 50–59, New York, NY, USA, 2004. ACM.

[Fra04] Keir Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, Uni-

versity of Cambridge, Computer Laboratory, February 2004.

[GC09] Shu-ling Garver and Bob Crepps. The new era of tera-scale computing.

http://software.intel.com/en-us/articles/

the-new-era-of-tera-scale-computing (retrieved 04-12-2012), January 2009.

[GE10] Khilan Gudka and Susan Eisenbach. Fast multi-level locks for java. Position paper

presented at the Workshop on Exploiting Concurrency Efficiently and Correctly,

EC2 ’10, Edinburgh, UK, July 2010.

[GHE12] Khilan Gudka, Tim Harris, and Susan Eisenbach. Lock inference in the presence of

large libraries. In Proceedings of the 26th European Conference on Object-Oriented

Programming, volume 7313 of Lecture Notes in Computer Science, pages 308–332,

Berlin, Heidelberg, Germany, 2012. Springer-Verlag.

[GHKP05] Rachid Guerraoui, Maurice Herlihy, Michal Kapalka, and Bastian Pochon. Robust

Contention Management in Software Transactional Memory. In Proceedings of the

OOPSLA 2005 Workshop on Synchronization and Concurrency in Object-Oriented

Languages, SCOOL ’05, 2005.

http://software.intel.com/en-us/articles/
the-new-era-of-tera-scale-computing

BIBLIOGRAPHY 183

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-

ification, Third Edition, chapter 17. Addison-Wesley Professional, Boston, MA,

USA, 2005.

[GLP75] Jim N. Gray, Raymond A. Lorie, and Gianfranco R. Putzolu. Granularity of locks

in a shared data base. In Proceedings of the First International Conference on

Very Large Data Bases, VLDB ’75, pages 428–451, New York, NY, USA, 1975.

ACM.

[Goe05] Brian Goetz. Synchronization optimizations in mustang. http://www.ibm.

com/developerworks/java/library/j-jtp10185/index.html (retrieved 04-12-

2012), October 2005.

[Gro03] Dan Grossman. Type-safe multithreading in cyclone. In Proceedings of the 2003

ACM SIGPLAN International Workshop on Types in Language Design and Im-

plementation, TLDI ’03, pages 13–25, New York, NY, USA, 2003. ACM.

[Gud07] Khilan Gudka. Implementing atomic sections using lock inference. Master’s thesis,

Imperial College of Science, Technology and Medicine, June 2007.

[Hal08] Richard L. Halpert. Static lock allocation. Master’s thesis, McGill University,

April 2008.

[Har03] Tim Harris. Design choices for language-based transactions. Technical Re-

port UCAM-CL-TR-572, University of Cambridge, Computer Laboratory, August

2003.

[Har05] Tim Harris. Exceptions and side-effects in atomic blocks. Sci. Comput. Program.,

58(3):325–343, December 2005.

[HF03] Tim Harris and Keir Fraser. Language support for lightweight transactions. In

Proceedings of the 18th ACM SIGPLAN Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOPSLA ’03, pages 388–402, New

York, NY, USA, 2003. ACM.

http://www.ibm.com/developerworks/java/library/j-jtp10185/index.html
http://www.ibm.com/developerworks/java/library/j-jtp10185/index.html

184 BIBLIOGRAPHY

[HFP06] Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Lock inference for atomic

sections. In On-line Proceedings of the First ACM SIGPLAN Workshop on Lan-

guages, Compilers, and Hardware Support for Transactional Computing, TRANS-

ACT ’06, June 2006. http://www.cs.purdue.edu/homes/jv/events/TRANSACT/

transact-06.tgz (retrieved 06-12-2012).

[HG06a] Benjamin Hindman and Dan Grossman. Atomicity via source-to-source transla-

tion. In Proceedings of the 2006 ACM SIGPLAN Workshop on Memory Systems

Performance and Correctness, MSPC ’06, pages 82–91, New York, NY, USA,

2006. ACM.

[HG06b] Benjamin Hindman and Dan Grossman. Strong atomicity for java without virtual-

machine support. Technical Report UW-CSE-06-05-01, University of Washington

Department of Computer Science and Engineering, Seattle, WA, USA, May 2006.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchro-

nization: Double-ended queues as an example. In Proceedings of the 23rd Interna-

tional Conference on Distributed Computing Systems, ICDCS ’03, pages 522–529,

Washington, DC, USA, 2003. IEEE Computer Society.

[HLM06] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework for

implementing software transactional memory. In Proceedings of the 21st ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA ’06, pages 253–262, New York, NY, USA, 2006. ACM.

[HLMSI03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Soft-

ware transactional memory for dynamic-sized data structures. In Proceedings of

the 22nd ACM Symposium on Principles of Distributed Computing, PODC ’03,

pages 92–101, New York, NY, USA, 2003. ACM.

[HLR10] Tim Harris, James R. Larus, and Ravi Rajwar. Transactional memory, 2nd edition.

Synthesis Lectures on Computer Architecture, 5(1):1–263, 2010.

http://www.cs.purdue.edu/homes/jv/events/TRANSACT/transact-06.tgz
http://www.cs.purdue.edu/homes/jv/events/TRANSACT/transact-06.tgz

BIBLIOGRAPHY 185

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural sup-

port for lock-free data structures. In Proceedings of the 20th International Sympo-

sium on Computer Architecture, ISCA ’93, pages 289–300, New York, NY, USA,

1993. ACM.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Compos-

able memory transactions. In Proceedings of the 10th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’05, pages 48–60, New

York, NY, USA, 2005. ACM.

[HP04] David Hovemeyer and William Pugh. Finding concurrency bugs in java. In Pro-

ceedings of the PODC 2004 Workshop on Concurrency and Synchronization in

Java Programs, CSJP ’04, July 2004.

[HPST06] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing mem-

ory transactions. In Proceedings of the 2006 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, PLDI ’06, pages 14–25, New

York, NY, USA, 2006. ACM.

[HPV07] Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge. Component-

based lock allocation. In Proceedings of the 16th International Conference on Par-

allel Architecture and Compilation Techniques, PACT ’07, pages 353–364, Wash-

ington, DC, USA, 2007. IEEE Computer Society.

[HRD04] John Hatcliff, Robby, and Matthew B. Dwyer. Verifying atomicity specifications

for concurrent object-oriented software using model-checking. In Proceedings of

the Fifth International Conference on Verification, Model Checking, and Abstract

Interpretation, volume 2937 of Lecture Notes in Computer Science, pages 175–190,

Berlin, Heidelberg, Germany, 2004. Springer-Verlag.

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algo-

rithm. In Proceedings of the 16th ACM Symposium on Parallelism in Algorithms

and Architectures, SPAA ’04, pages 206–215, New York, NY, USA, 2004. ACM.

186 BIBLIOGRAPHY

[Jon97] Mike Jones. What really happened on mars rover pathfinder. The Risks Digest,

19(49), December 1997. http://catless.ncl.ac.uk/Risks/19.49.html#subj1

(retrieved 06-12-2012).

[KCH+06] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and An-

thony Nguyen. Hybrid transactional memory. In Proceedings of the 11th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’06, pages 209–220, New York, NY, USA, 2006. ACM.

[KK08] Uday P. Khedker and Bageshri Karkare. Efficiency, precision, simplicity, and

generality in interprocedural data flow analysis: resurrecting the classical call

strings method. In Proceedings of the 17th International Conference on Compiler

Construction, volume 4959 of Lecture Notes in Computer Science, pages 213–228,

Berlin, Heidelberg, Germany, 2008. Springer-Verlag.

[KP12] Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data

structures. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’12, pages 141–150, New York, NY,

USA, 2012. ACM.

[KSK09] Uday P. Khedker, Amitabha Sanyal, and Bageshri Karkare. Data Flow Analysis:

Theory and Practice. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2009.

[Lea05] Doug Lea. The java.util.concurrent synchronizer framework. Sci. Comput. Pro-

gram., 58(3):293–309, December 2005.

[LH03] Ondřej Lhoták and Laurie Hendren. Scaling java points-to analysis using SPARK.

In Proceedings of the 12th International Conference on Compiler Construction,

volume 2622 of Lecture Notes in Computer Science, pages 153–169, Berlin, Hei-

delberg, Germany, 2003. Springer-Verlag.

[LH08] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive

points-to analysis using a BDD-based implementation. ACM Trans. Softw. Eng.

Methodol., 18(1):3:1–3:53, October 2008.

http://catless.ncl.ac.uk/Risks/19.49.html#subj1

BIBLIOGRAPHY 187

[Lho06] Ondřej Lhoták. Program Analysis using Binary Decision Diagrams. PhD thesis,

McGill University, January 2006.

[Lom77] David B. Lomet. Process structuring, synchronization, and recovery using atomic

actions. In Proceedings of an ACM Conference on Language Design for Reliable

Software, pages 128–137, New York, NY, USA, 1977. ACM.

[LR06] James R. Larus and Ravi Rajwar. Transactional memory. Synthesis Lectures on

Computer Architecture, 1(1):1–226, 2006.

[LT93] Nancy G. Leveson and Clark S. Turner. An investigation of the therac-25 acci-

dents. Computer, 26(7):18–41, July 1993.

[McC76] Thomas J. McCabe. A complexity measure. IEEE Trans. Softw. Eng., 2(4):308–

320, July 1976.

[MH06] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory: model

and architecture sketches. Sci. Comput. Program., 63(2):186–201, December 2006.

[MHW05] Kevin E. Moore, Mark D. Hill, and David A. Wood. Thread-level transactional

memory. Technical Report TR-1524, Computer Sciences Department, University

of Wisconsin, Madison, WI, USA, March 2005.

[Moi97] Mark Moir. Transparent support for wait-free transactions. In Proceedings of the

11th International Workshop on Distributed Algorithms, volume 1320 of Lecture

Notes in Computer Science, pages 305–319, London, UK, 1997. Springer-Verlag.

[MR07] Peter Müller and Arsenii Rudich. Ownership transfer in universe types. In Proceed-

ings of the 22nd ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, OOPSLA ’07, pages 461–478, New York,

NY, USA, 2007. ACM.

[MS98] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption-

safe locking on multiprogrammed shared memory multiprocessors. J. Parallel

Distrib. Comput., 51(1):1–26, May 1998.

188 BIBLIOGRAPHY

[MSIS04] Virendra J. Marathe, William N. Scherer III, and Michael L. Scott. Design trade-

offs in modern software transactional memory systems. In Proceedings of the

Seventh Workshop on Languages, Compilers, and Run-Time Support for Scalable

Systems, LCR ’04, pages 1–7, New York, NY, USA, 2004. ACM.

[Myc07] Alan Mycroft. Programming language design and analysis motivated by hardware

evolution. In Proceedings of the 14th International Static Analysis Symposium,

volume 4634 of Lecture Notes in Computer Science, pages 18–33, Berlin, Heidel-

berg, Germany, 2007. Springer-Verlag.

[MZGB06] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: synchro-

nization inference for atomic sections. In Proceedings of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’06, pages

346–358, New York, NY, USA, 2006. ACM.

[NA98] Gleb Naumovich and George S. Avrunin. A conservative data flow algorithm for

detecting all pairs of statements that may happen in parallel. In Proceedings of

the Sixth ACM SIGSOFT International Symposium on Foundations of Software

Engineering, SIGSOFT ’98/FSE-6, pages 24–34, New York, NY, USA, 1998. ACM.

[NMAT+07] Yang Ni, Vijay Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking, Richard L.

Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman. Open nesting

in software transactional memory. In Proceedings of the 12th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’07, pages

68–78, New York, NY, USA, 2007. ACM.

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag, Secaucus, NJ, USA, 1999.

[Ous96] John Ousterhout. Why threads are a bad idea (for most purposes). Invited talk

given at the USENIX 1996 Annual Technical Conference, January 1996.

BIBLIOGRAPHY 189

[Pea05] David J. Pearce. Some directed graph algorithms and their application to pointer

analysis. PhD thesis, Imperial College of Science, Technology and Medicine, Febru-

ary 2005.

[Pou04] Kevin Poulsen. Tracking the blackout bug. http://www.securityfocus.com/

news/8412 (retrieved 06-12-2012), April 2004.

[RD06] Kenneth Russell and David Detlefs. Eliminating synchronization-related atomic

operations with biased locking and bulk rebiasing. In Proceedings of the 21st ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and

Applications, OOPSLA ’06, pages 263–272, New York, NY, USA, 2006. ACM.

[Rei12] James Reinders. Transactional synchronization in haswell.

http://software.intel.com/en-us/blogs/2012/02/07/

transactional-synchronization-in-haswell/ (retrieved 06-12-2012), Febru-

ary 2012.

[RG00] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.

McGraw-Hill Higher Education, 2nd edition, 2000.

[RG05] Michael F. Ringenburg and Dan Grossman. AtomCaml: first-class atomicity via

rollback. In Proceedings of the 10th ACM SIGPLAN International Conference on

Functional Programming, ICFP ’05, pages 92–104, New York, NY, USA, 2005.

ACM.

[RHL05] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional mem-

ory. In Proceedings of the 32nd International Symposium on Computer Archi-

tecture, ISCA ’05, pages 494–505, Washington, DC, USA, 2005. IEEE Computer

Society.

[RSX08] Atanas Rountev, Mariana Sharp, and Guoqing Xu. IDE dataflow analysis in the

presence of large object-oriented libraries. In Proceedings of the 17th International

Conference on Compiler Construction, volume 4959 of Lecture Notes in Computer

Science, pages 53–68, Berlin, Heidelberg, Germany, 2008. Springer-Verlag.

http://www.securityfocus.com/news/8412
http://www.securityfocus.com/news/8412
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

190 BIBLIOGRAPHY

[SATH+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and

Benjamin Hertzberg. McRT-STM: a high performance software transactional

memory system for a multi-core runtime. In Proceedings of the 11th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’06, pages 187–197, New York, NY, USA, 2006. ACM.

[Sco87] Michael L. Scott. Language support for loosely coupled distributed programs.

IEEE Trans. Softw. Eng., 13(1):88–103, January 1987.

[SG00] Abraham Silberschatz and Peter Baer Galvin. Operating System Concepts. John

Wiley & Sons, Inc., New York, NY, USA, 5th edition, 2000.

[SIS05] William N. Scherer III and Michael L. Scott. Advanced contention management

for dynamic software transactional memory. In Proceedings of the 24th ACM

Symposium on Principles of Distributed Computing, PODC ’05, pages 240–248,

New York, NY, USA, 2005. ACM.

[SMSAT08] Florian T. Schneider, Vijay Menon, Tatiana Shpeisman, and Ali-Reza Adl-

Tabatabai. Dynamic optimization for efficient strong atomicity. In Proceedings of

the 23rd ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA ’08, pages 181–194, New York, NY, USA,

2008. ACM.

[SP81] Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow

analysis. In Program Flow Analysis: Theory and Applications, pages 189–234.

Prentice-Hall, Englewood Cliffs, NJ, USA, 1981.

[SRH96] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow

analysis with applications to constant propagation. Theor. Comput. Sci., 167(1-

2):131–170, October 1996.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of

the 14th ACM Symposium on Principles of Distributed Computing, PODC ’95,

pages 204–213, New York, NY, USA, 1995. ACM.

BIBLIOGRAPHY 191

[Sut05] Herb Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s Journal, 30(3), March 2005. http://www.drdobbs.com/

184405990 (retrieved 06-12-2012).

[Szy05] Craig Szydlowski. Multithreaded technology & multicore processors. Dr. Dobb’s

Journal, 30(5), May 2005. http://www.drdobbs.com/184406074 (retrieved 06-

12-2012).

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and

Vijay Sundaresan. Soot - a java bytecode optimization framework. In Proceed-

ings of the 1999 Conference of the Centre for Advanced Studies on Collaborative

Research, CASCON ’99. IBM Press, 1999.

[WHJ06] Adam Welc, Antony L. Hosking, and Suresh Jagannathan. Transparently reconcil-

ing transactions with locking for java synchronization. In Proceedings of the 20th

European Conference on Object-Oriented Programming, volume 4067 of Lecture

Notes in Computer Science, pages 148–173, Berlin, Heidelberg, Germany, 2006.

Springer-Verlag.

[WS06] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for multi-

threaded programs. IEEE Trans. Softw. Eng., 32(2):93–110, February 2006.

[WSAT08] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable transactions

and their applications. In Proceedings of the 20th Symposium on Parallelism in

Algorithms and Architectures, SPAA ’08, pages 285–296, New York, NY, USA,

2008. ACM.

[ZSZ+08] Yuan Zhang, Vugranam C. Sreedhar, Weirong Zhu, Vivek Sarkar, and Guang R.

Gao. Minimum lock assignment: A method for exploiting concurrency among

critical sections. In Proceedings of the 21st International Workshop on Languages

and Compilers for Parallel Computing, volume 5335 of Lecture Notes in Computer

Science, pages 141–155, Berlin, Heidelberg, Germany, 2008. Springer-Verlag.

http://www.drdobbs.com/184405990
http://www.drdobbs.com/184405990
http://www.drdobbs.com/184406074

192 BIBLIOGRAPHY

Appendix A

Output of Halpert et al. on concurrent

“Hello World” program

[wjtp.tn] *** Find and Name Transactions *** Wed Jan 19 18:02:53 GMT 2011

[0,0] r0 := @this: ConcurrentPrintln

[0,0] specialinvoke r0.<java.lang.Object: void <init>()>()

[0,0] return

[0,0] r0 := @parameter0: java.lang.String[]

[0,0] $r7 = r0[0]

[0,0] i0 = staticinvoke <java.lang.Integer: int parseInt(java.lang.String)>($r7)

[0,0] $r8 = r0[1]

[0,0] i1 = staticinvoke <java.lang.Integer: int parseInt(java.lang.String)>($r8)

[0,0] r1 = r0[2]

[0,0] $r9 = new java.io.PrintStream

[0,0] $r2 = new java.io.BufferedOutputStream

[0,0] $r3 = new java.io.FileOutputStream

[0,0] $r4 = <java.io.FileDescriptor: java.io.FileDescriptor out>

[0,0] specialinvoke $r3.<java.io.FileOutputStream: void <init>(java.io.FileDescriptor)>($r4)

[0,0] specialinvoke $r2.<java.io.BufferedOutputStream: void <init>(java.io.OutputStream)>($r3)

[0,0] specialinvoke $r9.<java.io.PrintStream: void <init>(java.io.OutputStream,boolean,java.lang.String)>($r2, 1, r1)

[0,0] r5 = $r9

[0,0] r6 = newarray (java.lang.Thread)[i0]

[0,0] i2 = 0

[0,0] goto [?= (branch)]

[0,0] if i2 < i0 goto $r10 = new ConcurrentPrintlnPrintThread

[0,0] $r10 = new ConcurrentPrintlnPrintThread

[0,0] $r11 = new java.lang.StringBuilder

[0,0] specialinvoke $r11.<java.lang.StringBuilder: void <init>(java.lang.String)>("t")

193

194 Appendix A. Output of Halpert et al. on concurrent “Hello World” program

[0,0] $r12 = virtualinvoke $r11.<java.lang.StringBuilder: java.lang.StringBuilder append(int)>(i2)

[0,0] $r13 = virtualinvoke $r12.<java.lang.StringBuilder: java.lang.String toString()>()

[0,0] specialinvoke $r10.<ConcurrentPrintlnPrintThread: void <init>(java.lang.String,int,java.io.PrintStream)>($r13, i1, r5)

[0,0] r6[i2] = $r10

[0,0] i2 = i2 + 1

[0,0] i3 = 0

[0,0] goto [?= (branch)]

[0,0] if i3 < i0 goto $r14 = r6[i3]

[0,0] $r14 = r6[i3]

[0,0] virtualinvoke $r14.<java.lang.Thread: void start()>()

[0,0] i3 = i3 + 1

[0,0] i4 = 0

[0,0] goto [?= (branch)]

[0,0] if i4 < i0 goto $r15 = r6[i4]

[0,0] $r15 = r6[i4]

[0,0] virtualinvoke $r15.<java.lang.Thread: void join()>()

[0,0] i4 = i4 + 1

[0,0] return

[0,0] r0 := @this: ConcurrentPrintlnPrintThread

[0,0] r1 := @parameter0: java.lang.String

[0,0] i0 := @parameter1: int

[0,0] r2 := @parameter2: java.io.PrintStream

[0,0] specialinvoke r0.<java.lang.Thread: void <init>()>()

[0,0] r0.<ConcurrentPrintlnPrintThread: java.lang.String message> = r1

[0,0] r0.<ConcurrentPrintlnPrintThread: int numPrints> = i0

[0,0] r0.<ConcurrentPrintlnPrintThread: java.io.PrintStream printer> = r2

[0,0] return

[0,0] r0 := @this: ConcurrentPrintlnPrintThread

[0,0] i0 = 0

[0,0] goto [?= $i1 = r0.<ConcurrentPrintlnPrintThread: int numPrints>]

[0,0] $i1 = r0.<ConcurrentPrintlnPrintThread: int numPrints>

[0,0] if i0 < $i1 goto $r2 = new java.lang.Object

[0,0] $r2 = new java.lang.Object

[0,0] specialinvoke $r2.<java.lang.Object: void <init>()>()

prep: r1 = $r2

[0,0] entermonitor $r2

Transaction found in method: <ConcurrentPrintlnPrintThread: void run()>

Warning: using default implementation of addAll. You should implement a faster specialized implementation.

this is of type soot.jimple.spark.sets.HashPointsToSet

other is of type soot.jimple.spark.sets.HybridPointsToSet

exclude is null

[1,0] $r3 = r0.<ConcurrentPrintlnPrintThread: java.io.PrintStream printer>

[1,0] $r4 = r0.<ConcurrentPrintlnPrintThread: java.lang.String message>

{0,0} virtualinvoke $r3.<java.io.PrintStream: void println(java.lang.String)>($r4)

195

Read/Write Set for LibInvoke:

Read Set:(0)[emptyset]

Write Set:(0)[emptyset]

[0,0] exitmonitor r1

[0,0] $r5 := @caughtexception

[0,0] $r5 := @caughtexception

[0,0] exitmonitor r1

[0,0] $r5 := @caughtexception

[0,0] throw $r5

[0,0] goto [?= i0 = i0 + 1]

[0,0] i0 = i0 + 1

[0,0] $i1 = r0.<ConcurrentPrintlnPrintThread: int numPrints>

[0,0] if i0 < $i1 goto $r2 = new java.lang.Object

[0,0] $r2 = new java.lang.Object

[0,0] specialinvoke $r2.<java.lang.Object: void <init>()>()

prep: r1 = $r2

[0,0] entermonitor $r2

[0,0] return

[wjtp.tn] *** Find Transitive Read/Write Sets *** Wed Jan 19 18:02:54 GMT 2011

[wjtp.tn] *** Calculate Locking Groups *** Wed Jan 19 18:02:54 GMT 2011

[wjtp.tn] *** Detect the Possibility of Deadlock *** Wed Jan 19 18:02:54 GMT 2011

[wjtp.tn] *** Calculate Locking Objects *** Wed Jan 19 18:02:54 GMT 2011

[wjtp.tn] *** Print Output and Transform Program *** Wed Jan 19 18:02:54 GMT 2011

	Abstract
	Dedication
	Acknowledgements
	Statement of Originality
	Introduction
	Motivation
	Subtleties of concurrent programming
	Preventing race-conditions
	Race-freedom as a non-interference property
	Enter the world of atomicity
	The joys-8.5-.25ex complexities of locks
	What about lock-free programming?
	Intractability of programmer-enforced atomicity

	The quest for better abstractions
	Atomic sections
	Implementing atomic sections

	Lock inference
	Lock inference for Java
	Contributions
	Publications

	Background
	Atomic sections
	Semantics of atomic sections
	Serialisability and two-phase locking
	Atomic section nesting: flat, closed or open nesting

	Transactional memory
	Hardware transactional memory (HTM)
	Software transactional memory (STM)

	Lock inference
	Program analysis
	Data flow analysis
	Intraprocedural versus interprocedural

	Review of the lock-inference literature
	Basics of lock inference
	Inferring shared accesses
	Inferring locks
	Acquiring/releasing locks
	Additional features

	Soot
	Conclusion

	Scalable lock inference
	General approach
	Java features not handled by our analysis
	Call-graph construction

	Inferring object accesses
	From sets to environments
	Environment transformers
	Graph representation of transformers
	Transformer composition
	Sparsity
	Computing method summaries
	Interprocedural propagation
	A note on lattice ordering and monotonicity

	Inferring locks
	Avoiding deadlock
	Evaluation
	``Hello World''
	GNU Classpath
	Benchmarks

	Conclusion

	Analysis optimisations
	Summarising CFGs
	Delta transformers
	Parallel propagation
	Efficient data structures
	Worklist ordering
	Evaluation
	Optimisation comparison
	Scalability

	Conclusion

	Minimising locking overhead
	Reducing the number of locks acquired
	Lock elision for single-threaded execution
	Thread-local objects
	Instance-local objects
	Class-local objects
	Method-local objects
	Dominators
	Read-only locks
	Unnecessary intentional locking
	Lock elision for single-atomic execution

	Lock implementation
	Multi-granularity locking protocol
	The Synchronizer framework

	Deadlock
	Evaluation
	Conclusion

	Conclusion
	Summary of thesis achievements
	Recap of motivation
	Achievements

	Future work
	Cold code paths
	Eliminate type locks
	Parallelism within atomic sections
	Hybrid with transactional memory

	Closing remarks

	Bibliography
	Output of Halpert et al. on concurrent ``Hello World'' program

