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Abstract. Atomicity provides strong guarantees against errors caused
by unanticipated thread interactions, but is difficult for programmers to
implement with low-level concurrency primitives. With the introduction
of multicore processors, the problems are compounded. Atomic sections
are a high level language feature that programmers can use to designate
the blocks of code that need to be free from unanticipated thread inter-
actions, letting the language implementation handle the low-level details
such as deadlock. From a language designer’s point of view, the challenge
is to implement atomic sections without compromising performance.

We propose an implementation of atomic sections that inserts locks
transparently into object-oriented programs. The main advantages of our
approach are: (1) We infer path expressions (that at run-time resolve to
actual objects) for many more accesses in the atomic section than previ-
ous work could infer. (2) We use multi-granularity locking for guarding
iterative traversals. (3) We ensure freedom from deadlock by rolling back
the lock acquisition phase. (4) We release locks as early as possible. In
summary, our approach uses a finer-grained locking discipline than pre-
vious lock inference techniques.

1 Introduction

In shared memory concurrent software, to prevent erroneous behaviour due to
unanticipated thread interactions, programmers ensure that appropriate blocks
of code are atomic [18]. Atomicity is a stronger property than race-freedom
[6], guaranteeing against high-level concurrency bugs such as stale values. A
programmer can reason about atomic blocks with sequential intuition.

In an object-oriented language with locks, a block of code can be made atomic
through the following process: A guarding discipline must be chosen (and obeyed)
that specifies a lock for each shared memory object. For each block of atomic code
and for each object accessed by the block, the appropriate locks must be acquired.
Thus the developer must be aware of accesses internal to any invoked functions
(breaking encapsulation). Furthermore, for correctness, the lock acquisitions and
releases follow a two-phase discipline [5], i.e. the acquisitions must precede all
releases in the block. Finally, locks must be acquired according to the same
partial order to avoid deadlocks. In time, it will become necessary to maintain
the code, where care must be taken to keep the lock acquisitions in sync with
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newly introduced accesses in the code. The process is unforgiving. Any error
introduces a possible bug (e.g. deadlock, stale value, race condition), which is
hard to reproduce, and troublesome to trace to an underlying cause.

While atomicity allows us to more confidently assert the absence of concur-
rency errors, it cannot be reliably enforced by programmers. The problem of
enforcement would be better solved by the programming language implementa-
tion, and the primitive that sets out to achieve this goal is the atomic section. By
simply marking a block of code as atomic, the programmer can be assured that
the implementation will execute as if all other threads were suspended, without
having to implement any extra machinery.

Although atomic sections allow the programmer to pretend a block is ex-
ecuted sequentially, such an implementation would have poor performance. A
transparent optimisation is for non-interfering threads to be allowed to execute
in parallel with atomic sections. There are a number of proposed methods for ef-
ficient atomic section implementations, which can be divided into two categories:
Optimistic approaches, in the form of Software or Hardware Transactional Mem-
ory [2,11,12,14,17,20,21,22,23], rely on being able to detect thread interference
at runtime and rollback the state to the beginning of the atomic section where it
is known to be uncorrupted. Pessimistic approaches statically attempt to infer
locks sufficient for preventing interference [4,7,15,19,25]. The more efficient im-
plementations of transactions and all lock inference implementations, including
ours, prohibit the access of shared objects outside of atomic sections.

The optimistic approach can detect interference, whereas the nature of static
inference means that only a conservative approximation can be made, reducing
parallelism by taking more locks than required for a particular execution of an
atomic section. On the other hand, the pessimistic approach does not require any
runtime machinery for recording accesses, which if implemented in software can
reduce performance. Additionally, no cycles will be wasted contributing towards
a state which gets rolled back. If contention is high, transactional systems may
spend more time rolling back than making useful progress. Finally, only internal
invisible actions such as memory reads and writes can be rolled back; if an
optimistic approach is to be used, external actions such as IO must not be allowed
in an atomic section. This means that the compiler either has to reject such
programs or transparently move the IO out of the atomic section. Pessimistic
techniques have no such restriction.

We chose to implement atomic sections pessimistically using lock inference.
We face the same challenges as programmers: Taking enough locks at the right
time, striving for fine-grained locking while also trying to minimise the overhead
of locking code, and avoiding deadlocks. We have strived to make our imple-
mentation transparent to the programmer, requiring no additional type or other
annotations.

In Sect. 2, we summarise our approach and describe how we handle an exam-
ple. In Sect. 3, we describe our program analysis in detail. In Sect. 4, we describe
how we use the result of our program analysis to generate locking code, without
deadlocking. In Sect. 5, we report on the use of our approach with part of a real
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program. In Sect. 6, we discuss how our approach differs to that of the related
work. We conclude with Sect. 7.

2 General Approach and Features

We use a data-flow analysis, at link or JIT time, to infer the object accesses
performed by each atomic section. This analysis needs to traverse any code that
might be invoked by the block in question, so the whole program is needed. When
the analysis terminates, we know, at each program point, the set of objects that
are accessed from that point until the end of the atomic section. The inferred
accesses then need to be translated into locks. We believe our representation of
accesses is novel, and the most precise to date. As a simplification all objects
after construction are shared. Detecting thread-local heap objects would benefit
many systems like ours, and we do not discuss it here.

We try and use one lock per object, or instance locks, where possible, so that
the parallelism can scale with the data. Sometimes code can access a statically
unbounded number of objects. This happens during iterations over objects, and
when we approximate an array index expression. In such cases, we use the type
of the accessed objects to take a multilock which guards all instances of that type
and subtypes. The semantics of multilocks require that if one thread has taken
the multilock on an object, any other threads attempting to lock a subordinate
instance of that multilock will be blocked until the multilock is released. We also
distinguish between read/write accesses, and we use read/write locks to allow
multiple parallel reads. We need re-entrant locks in case objects happen to be
aliased at runtime, causing the same lock to be taken twice.

The code in Figure 1 is for an instant messaging system, where a client can
send a stream of messages to another client, by name, through a central server.
The Client constructor registers a new client in a centralised hashtable of clients.
This must be an atomic operation in order that the uninitialised value of the
hash entry e.val is not visible to other threads. Our system infers two locks –
the hashtable itself (for reading), and the array of buckets inside the hashtable
(for writing). Although the hash entry is modified, it is a newly constructed
object and thus cannot be seen by other threads. We give the inferred locks as
comments in the code, where ! denotes a write lock.

The atomic section starting on line (53) iterates (HashEntry.findKey is re-
cursive) through a list of hash entries, and thus the analysis has to lock (for
reading) the multilock that subsumes every hash entry. Atomic sections starting
on lines (59) and (63) simply access a pair of clients and a single client object,
and the locking reflects this. The atomic section starting on line (45) is only
ever called from within another atomic section starting on line (59), so does not
have any locking code inserted into it. If it were also called from a pre-emptive
context (i.e. from outside an atomic section), we would have a problem inserting
locking code into it, because this code would also be executed by the atomic
section starting on line (59). We solve this problem by duplicating functions if
they are called from both atomic and pre-emptive contexts.
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1 class HashEntry {
2 s t r i n g key ; Object va l ; HashEntry next ;
3 HashEntry ( s t r i ng key ) { this . key = key ; }
4 HashEntry findKey ( s t r i n g key ) {
5 i f ( this . key==key ) {
6 return this ;
7 } else {
8 i f ( next==null ) { return null ; }
9 else { return next . f indKey ( key ) ; }

10 } } }
11
12 class HashTable {
13 HashEntry [ ] buckets ;
14 HashTable ( ) { buckets = new HashEntry [ 1 0 0 ] ; }
15 int index ( s t r i n g key ) {
16 int hash = key . hash % buckets . l ength ;
17 i f ( hash <0) { hash = hash + buckets . l ength ; }
18 return hash ;
19 }
20 HashEntry createHashEntry( s t r i n g key ) {
21 HashEntry entry = new HashEntry ( key ) ;
22 int index = index ( key ) ;
23 entry . next = buckets [ index ] ;
24 buckets [ index ] = entry ;
25 return entry ;
26 }
27 HashEntry findHashEntry ( s t r i n g key ) {
28 HashEntry entry = buckets [ index ( key ) ] ;
29 i f ( entry==null ) { return null ; }
30 return entry . f indKey ( key ) ;
31 } }
32
33 class Cl i en t {
34 s t r i n g name ; HashTable a l l C l i e n t s ; C l i e n t i n t e r l o c u t o r ;
35 Cl i en t (HashTable a l lC l i e n t s , s t r i n g name) {
36 this . a l l C l i e n t s = a l l C l i e n t s ; this . name = name ;
37 atomic { // lock s : { a l lC l i en t s , ! a l lC l i e n t s . bucke ts}
38 HashEntry e = a l l C l i e n t s . createHashEntry(name ) ;
39 e . va l = this ;
40 }
41 run ( ) ;
42 }
43 s t r i n g read ( ) { return "" ; }
44 void accept ( C l i e n t source , s t r i n g msg) {
45 atomic { //omitted
46 p r in t "<"+source . name+"> −−−> <"+name+"> "+msg ;
47 } }
48 void run ( ) {
49 while ( true ) {
50 s t r i ng msg = read ( ) ;
51 i f (msg==" connect" ) {
52 s t r i n g name = read ( ) ;
53 atomic { // lock s : {HashEntry}
54 HashEntry e = a l l C l i e n t s . f indHashEntry (name ) ;
55 i n t e r l o c u t o r = ( Cl i en t ) e . va l ;
56 } }
57 i f (msg=="send" ) {
58 s t r i n g cargo = read ( ) ;
59 atomic { // lock s : { th i s , i n t e r l o c u t o r}
60 i n t e r l o c u t o r . accept ( this , cargo ) ;
61 } }
62 i f (msg==" d i s c onne c t" ) {
63 atomic { // lock s : { ! t h i s }
64 i n t e r l o c u t o r = null ;
65 } } } } }

Fig. 1. Example source program using atomic sections
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Table 1. Example of path graphs inferred at the top of two atomic sections from Fig. 1

Line Path set Path graph

37 allClients
allClients.buckets

53

this
this.allClients
this.allClients.buckets
this.allClients.buckets[*]
this.allClients.buckets[*].next
this.allClients.buckets[*].next.next
...

Our program analysis gives us information about what locks should be held
at every program point in the atomic section. This means we have enough infor-
mation to release locks straight after the last access of any objects they guard.
Releasing locks early reduces contention, at no extra cost.

3 Path Graphs Inference

The keystone of our approach is an analysis that infers the object accesses in
a given block of code. We assume that a control flow graph (CFG) is set up,
with five types of node: Copies e.g. x=y (including assignment of new objects
or null), stores e.g. x.f=y, loads e.g. x=y.f, array stores e.g. x[i]=y, and
array loads e.g. x=y[i]. Our analysis is a backwards ‘may’ analysis. Each edge
initially has no accesses, and we don’t introduce accesses at the exit of the
atomic section. Instead, accesses are generated by the CFG nodes (except for
copy nodes), which also transform accesses. When the analysis terminates, the
complete set of object accesses for the atomic section is left at its entry node.

The state at each edge is a path graph, which we use to represent a possibly-
infinite set of paths. A path is a sequence of field or array accesses starting from a
local variable, and can be used to statically characterise an object access. When
statically analysing an iteration over an object structure, we do not know how
many times the loop will repeat, and thus how many objects will be touched.
Although the analysis can infer an infinite number of paths, the path graph
representation is finite. Table 1 gives an example of two path graphs as produced
by our analysis, and their corresponding path sets. The path sets are prefix-
complete since we cannot access an object unless it is either bound to a variable
before the atomic section began, or can be retrieved through another object.

In general, it will be impractical to record which element of an array was
accessed, e.g. if the index was calculated using a complicated algorithm. The
syntax [*] in the paths represents this. For brevity, in this presentation we
immediately widen array element accesses to [*]. A system which already has
some understanding of integer arithmetic could be more precise.

Path graphs are deterministic finite automata (DFA). The hollow node is the
initial state, and all the other nodes are possible exit states, thus the set of paths
is represented by the path graph. The atomic section starting on line (53), which
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a[x = y]n = ∅
a[x = null]n = ∅
a[x = new]n = ∅
a[x = y.f ]n = {y → n}
a[x.f = y]n = {x → n}
a[x = y[i]]n = {y → n}
a[x[i] = y]n = {x → n}

t[x = y]n(G) = G \ {x → n′|x → n′ ∈ G} ∪ {y → n′|x → n′ ∈ G}
t[x = null]n(G) = G \ {x → n′|x → n′ ∈ G}
t[x = new]n(G) = G \ {x → n′|x → n′ ∈ G}
t[x = y.f ]n(G) = G \ {x → n′|x → n′ ∈ G} ∪ {n

f−→ n′|x → n′ ∈ G}
t[x.f = y]n(G) = G \ {n′ f−→ _|x → n′ ∈ G, (�z �= x : z → n′ ∈ G), (�n′′′ : n′′′ _−→ n′ ∈ G)}

∪ {y → n′|_ f−→ n′ ∈ G}
t[x = y[_]]n(G) = G \ {x → n′|x → n′ ∈ G} ∪ {n

[∗]−−→ n′|x → n′ ∈ G}
t[x[_] = y]n(G) = G ∪ {y → n′|_ [∗]−−→ n′ ∈ G}

Fig. 2. Data flow transfer functions

through iteration can access an unbounded number of objects, requires a cycle
in the path graph in order to keep the representation finite. We represent the
path graph as a set of edges, which are either labelled between a pair of nodes, or
unlabelled between a variable and a node, e.g. the second path graph in Table 1
could be represented with the set:

{this → 1, 1 allClients−−−−−−−→ 2, 2 buckets−−−−−→ 3, 3
[∗]−→ 4, 4 next−−−→ 4}

As this representation allows multiple identically-named arrows from a state, it
is actually a nondeterministic finite automaton (NFA). Our analysis computes
NFAs but for locking purposes we convert them to minimised DFAs [16]. The
numbered nodes in this representation correspond to the index of the CFG node
where the access occurred. Because there are finitely many CFG nodes, variables,
and fields, the set of edges and therefore the state of the analysis is also finite.
It remains to give the transfer functions that compute, at each CFG node, the
entry set from its exit set.

Figure 2 gives two functions, where (\) binds tighter than (∪), x, y, z range
over variables, f, g range over fields, G ranges over path graphs, and _ repre-
sents an unbound variable. Function a gives a path graph representing accesses
generated by the given CFG node with index n. This path graph has meaning
only in the state where the access occurred. Since we intend to lock the objects
represented by this path graph at the top of the atomic section, and the state is
mutated by assignments between these two points, the function t will transform
a path graph to compensate for the side-effect of a given CFG node. At each
CFG node, we compute the entry path graph by applying t to the exit path
graph, and also include the result of a. Translating allows us to handle code
like atomic {x=y ; x.f=42} without requiring that x and y are guarded by the
same lock. Our analysis returns the path y.

When translating path graphs through copy nodes, paths starting with the
lvalue are renamed so they start with the rvalue, except where the rvalue is a new
object or null, where the accesses are simply killed. Load nodes are similar, but
replace accesses of the form x.f1.f2 with y.f.f1.f2. Note that this works only
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because a sets up an edge from y to n. Store nodes have to handle aliases, e.g.
in atomic { me.car = you.car ; dave.car.fuel = 100 } it is clear that me,
you, and dave are accessed, but it is not clear which car is accessed. If me was
an alias of dave then the accessed car is described by you.car, otherwise the
assignment has no effect and we must lock dave.car. Alias analysis can help
here, but in this presentation we assume conservatively that everything can be
an alias, hence the function t introduces new edges from y to any node that has
the appropriate field edge leading to it. The only alias we can assert is that x is
an alias of x; in other words, we can kill x.f from the graph. This means killing
an edge like f−→, which we can do only if it is not used by any other paths, which
we require with the two negated existential predicates. Array loads and stores
are similar to their field counterparts.

It is possible to improve the accuracy of the analysis using type information,
e.g. if x : A[] and z : B[] in atomic { x[1] = y ; z[1].f = 10; } then there
is no need to infer the path y. Since the two arrays have different types, x cannot
be an alias of z and thus the access z[*] will suffice. Similarly, we can use type
information to distinguish between identically-named fields in different classes.
Points-to information could also be used.

4 Lock Insertion

In this section we describe in detail our approach for inserting lock acquisition
and release code into an atomic section. We describe how we detect deadlock
and roll back the locking code, and how the analysis supports readers/writers
and early unlocking.

4.1 Inferring Locks from a Path Graph

The path graphs analysis outputs a minimised DFA. We first process this graph
looking for cycles and widened array access edges (i.e.

[∗]−→ edges). Nodes reach-
able from such edges are marked as dirty, and the edges are removed. The graph
is now acyclic and we perform a depth first search to pick out paths to lock. In
the atomic section on line (53) of Table 1 we dirty the far-right node and re-
move the two edges pointing to it. We infer the paths {this, this.allClients,
this.allClients.buckets}, that can be locked directly (in prefix order); we
have to use a multilock to lock the dirty node. We use type information (the
element type of the buckets array) to get the type of the objects represented
by the dirty node (HashEntry), and we lock the multilock associated with this
type. We associate a multilock with each class that guards all instances of the
class. This lock allows subordinate instance locks to be acquired only when it is
not held. Because classes are subsumed by subtyping, we also lock any subtypes
of the class, of which there are none in our example. We also have multilocks for
array types, e.g. for Object[x][y] accesses.

We wanted to use read/write locks, i.e. locks that allow multiple threads to
have the read lock so long as no thread has the write lock. We were surprised
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to discover that the path graph representation already encodes this information.
Because each node in the graph is a specific CFG node, and the CFG node
determines the access type (load/store = read/write), the node index can be
used to determine read/write locking. The only caveat is that we have to make
sure that we preserve this information when collapsing the NFA to a minimised
DFA.

Consider atomic { y = x.f ; y.g = 10 }, for which we would lock x,
!x.f. If x was null, then this block would throw a NullPointerException
(NPE). More importantly, so would our locking code. In general, throwing an
exception from the locking code would not preserve the semantics of the atomic
section, as there may be side-effects from before the NPE that now never occur.
We need to either check for null before locking, or catch the NPE. If x is null
we do not lock it, or x.f. There is a similar problem with ClassCastException,
e.g. atomic { y = ((A)x).f ; y.g = 10 }, for which we also infer x,x.f. If
the type of x does not have a field f, then we must cast it to A. We must there-
fore either check that that this is possible, or catch the exception. Null pointer
analysis and points-to information can minimise the number of checks required.

4.2 Deadlock

Existing approaches guarantee the absence of deadlock at compile-time by always
acquiring locks in the same order, and if such an ordering cannot be found they
typically coarsen the granularity. Our type multilocks are static, thus can be
statically ordered, e.g. alphabetically. Our instance locks cannot be statically
ordered, but rather than coarsen the granularity, we detect deadlock and roll back
the lock acquisition phase at run-time. Although this sounds like a transaction,
there are no side effects to roll back, so no transaction log is required. This means
that we have to take all locks at the beginning of the atomic section. We expect
deadlock to be rarer than transaction collision, because the lock acquisition phase
is much shorter than a whole atomic section, so we do not anticipate live locking
to result. It also offers the possibility of high-priority threads forcing low-priority
threads to give up their locks if they are stalled in a lock-acquisition phase.

Deadlock is typically detected at run-time by looking for cycles in a waits-for
graph. Many systems check for deadlock, such as the Java Hotspot VM. This
information is available at runtime, as it is needed by the lock implementation,
but checking for cycles at each failed lock acquisition still incurs a performance
penalty. This is a trade-off however, as we have better granularity as a result of
keeping instance locking. If there are more CPUs than awake threads, this com-
putation will be performed on a CPU which would otherwise be idle, eliminating
the runtime penalty.

4.3 Parole

If an atomic section has finished accessing an object, but still has a lot of com-
putation left to complete, it can release the lock early to gain finer granularity.
We can also demote write locks to read locks, and multilocks to instance locks.
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Edge Fixed point Early unlocks Late relocks
1 {!x, !y} {} {}
2 {!x} {!y} {}
3 {x, !x.f} {!x} {x,!x.f}
4 {!x, !y} {} {}
5 {x, !x.f} {!x,!y} {x,!x.f}
6 {!t} {x,!x.f} {!t}
7 {} {!t} {}

Fig. 3. Result of path graph analysis applied to early release

This is particularly important in the context of conservative analysis. Figure 3 is
a simple example that demonstrates much of the power of early unlocking. We
provide, at each edge, the path graph at the fixed point of the analysis, after it
has been converted to a DFA, minimised, and reduced to locks. An exclamation
mark represents a write lock. All of the locks in this example are paths.

At the entry of the atomic section (edge 1), we take the locks {!x, !y} using the
deadlock detection/rollback strategy described above. Once this is successful,
execution will follow one of the branches. One branch (4,5) will cause us to
eventually access both objects, and the other (2,3), only !x, as reflected by the
edges 2 and 4 in the table. The analysis records that at edge 2, only the lock !x
is required, so by subtracting the two sets we can calculate locks to release, i.e.
the Early unlocks column. If the set of locks increases, e.g. from edge 2 to edge 3,
we have to acquire the extra lock in order for a later release to be well-balanced,
we list this in the Late relocks column. Such locks have already been acquired
by the thread, reacquiring them just increases the re-entrant counter. There is
no risk of deadlock. We always acquire before release, to make sure we do not
let the re-entrant counter reach zero. Thus locking remains two-phase.

At an assignment, where locks are translated from one variable to another,
there will usually be a pair of redundant acquire/release actions. We used a
simple alias analysis to remove redundant locking, denoted with strike-through.
This also allows us to avoid redundant locking on known-to-be null or newly
constructed objects. The remaining acquires and releases serve useful purposes:
Unlocking !y at edge 2 allows other threads to proceed in parallel, as this thread
is now certain it will not write to (or read) y. Releasing x and !t at edges 6
and 7 respectively allows the atomic section to terminate with all locks released.
Acquiring x and releasing !x at edge 5 allows other threads to read in parallel,
as this thread no longer needs to write to x. The analysis similarly demotes a
multilock to an instance lock, e.g. when a list is searched for an object which
is then accessed. In the case of array indexing using a computed index, even if
the analysis was equipped with more powerful array access edges and transfer
functions, we would have to take a multilock as we would not statically know
what element will be accessed. However, once the array index has been computed,
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the analysis would demote the multilock to an instance lock and similarly allow
other threads to proceed.

The spurious lock of x at edge 3 is necessary because at this time x and x.f
are aliases, and the releases at edges 6 and 7 will serve to release the same lock
twice. Therefore, in the branch we must acquire x once more to balance the
forthcoming releases. Aside from using the alias analysis to remove redundant
locking, we were surprised that we needed no extra mechanism to set up early
lock release. Our path graph analysis turned out to be powerful enough to encode
read/write information and early release information in its basic form.

Sowing unlocking code throughout the invoked functions of an atomic section
causes problems when one of the functions is called from more than one context.
A number of solutions present themselves: Aggressively in-lining functions is
simple and minimises contention, but will increase the size of the program and
may cause performance problems such as cache misses. It should be possible
to release locks after the call has returned, but a reference would have to be
kept to the objects in question in case re-assignment renders them inaccessible.
Alternatively, we could acquire a given lock once for each access, and release it
after each access, but this would introduce more overhead. We chose to use the
first technique, duplicating methods to ensure they are only called from more
than one context in the case of recursion.

4.4 Splitting the Atom

Sometimes, it is desirable to turn off the atomicity of an atomic section for a
period, perhaps to do some lengthy thread-local computation, or to communicate
with other threads. It is possible to refactor the code into two separate atomic
sections, but challenging because atomic sections are lexically scoped. To allow
easy expression, we use a preempt section which when placed inside an atomic
section, releases/reacquires locks to break the atomic section into two distinct
parts. We have used this construct to implement wait/notify semantics.

The implementation of preempt sections uses the same program analysis as
the implementation of atomic sections. A preempt section is represented in an
atomic section’s CFG by a black hole node that blocks the propagation of the
path graph. This induces lock releases before the preempt, and acquisitions after
it. We have to detect deadlock and backtrack when re-acquiring the locks after
the preempt section. Figure 4 is the CFG of an atomic section that called wait()
between a pair of object accesses. We have annotated the edges with the fixed
point locks, acquires, and releases, as in Fig. 3. The grey circular node is the
black hole node. The code for the wait/notify implementation is in Fig. 5.

5 Experiment

We have attempted to evaluate our approach on an existing application. We have
implemented a subset of Java, with primitive types, classes, reference types,
arrays, inheritance, overloading, dynamic binding, branches, loops, and early
returns. All the examples in the paper were written in this language.
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Fig. 4. CFG of an atomic section that calls wait(). The fixed point of the analysis
is in italics, early lock release is in roman, e.g. U(!this). We have omitted redundant
lock acquires and releases. The two this locks in the far right function correspond to
the this variables in the wait() function and the converter, which are distinct. Our
sharedObject is an instance of IntList, given in Fig. 5.

class IntList {
IntList next; int cargo;
IntList (IntList next, int cargo) {

this.next = next;
this.cargo = cargo;

} }

class ConditionVariable {
IntList waiters;
void wait() {

atomic {
waiters = new IntList(waiters,threadid);
preempt { park; }

} }
void notify() {

atomic {
unpark waiters.cargo;
waiters = waiters.next;

} }
void notifyAll() {

atomic {
while (waiters!=null) { notify(); }

} } }

Fig. 5. The code for the wait/notify implementation referenced above. The IntList
records a queue of waiting threads, so that notify can wake them up. The keyword
threadid gets the id of the current thread. The unpark and park keywords allow
suspending and resuming of threads, by thread id.
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Previous work [19,4] has used the AOLserver [1] source code (which is publicly
available) as a case study. AOLserver is a high performance http server, written
in C, which uses Tcl as a scripting language to drive dynamic content. Although
multiple Tcl interpreters can be running simultaneously, e.g. for simultaneous
client connections, they are essentially orthogonal. The actual concurrency is
handled with C code where a shared store is provided for communication between
Tcl interpreters. The source code was annotated with atomic sections and a form
of guard annotation (which we do not need) by the authors of [19], who kindly
made the source code available to us. The authors of [4] have a lock inference
algorithm which they also benchmarked with the annotated AOLserver. Their
approach was very different to ours, and we were interested in comparing their
results with ours.

Since our analysis has not been implemented for C, we would have to translate
AOLserver in order to process it. AOLserver is a large piece of software, so we
chose one particular compilation unit, tclvar.cwhich the previous work seemed
to find most demanding. We tried to reproduce the original code as closely as
possible. Although it was written in C, the code slipped quite easily into an
object-oriented design. Because our analysis is at this stage a whole-program
analysis, we also had to implement a small part of the Tcl API. Some of the Tcl
functions we left as stubs or only partially implemented, but we were careful to
reproduce any accesses the real Tcl API would perform. As such, we are actually
analysing more code than the previous work.

Although our implementation was naive, using Java data structures to store
the analysis state, we hoped to get reasonable times for the AOLserver code.
For each atomic section, we recorded how many nodes were present in the CFG,
and how long it took to solve on a P4 3.2GHz CPU with 1GB of RAM, running
the Java Hotspot VM v1.6.0. We also give the number of read/write multilocks
(RM,WM), and how many read/write instance locks (RI,WI) taken at the top
each atomic section. These results are presented in Fig. 6. The solve time includes
the time spent minimising the path graph and inferring a set of locks at each
edge. Our analysis is much faster than [4], as it works directly on the CFG
without a costly setup phase, and the solving phase is faster too. Since each
atomic section is treated separately, the time is linear in the number of atomic
sections. Most of the time is spent cloning and garbage collecting.

6 Related Work

A number of techniques exist to verify programmer implementations of atomic-
ity, such as: type checking [3], type inference [8], model checking [13], theorem
proving [9] and run-time analysis [26]. Some of this work has used variants of
ownership types, to specify the guarding relationship between objects. Conse-
quently, they can support more powerful guarding disciplines, where static locks
can be avoided altogether, but at the cost of additional annotations.

As discussed in Sect. 2, transactional memory is an optimistic implementation
of atomicity, but relies on detecting interference from other threads and the
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Atomic section CFG Node count Solve time (seconds) RI WI RM WM
1 219 0.566 2 4 4 0
2 242 0.489 2 4 4 0
3 284 0.728 1 4 3 1
4 203 0.345 3 3 3 0
5 319 0.946 1 4 3 1
6 277 0.694 2 4 5 0
7 101 0.119 1 0 4 1
8 286 0.897 2 4 4 0
9 360 2.385 2 4 7 0
10 169 0.164 3 3 4 0
11 272 0.759 1 4 5 0

The results in [4] state 2399 seconds for this file. Our total time was approximately 8 seconds.

Fig. 6. Results of applying our analysis to the AOLserver tclvar.c fragment

ability to roll back. It can allow more parallelism but at the cost of IO, and the
risk of livelock. Software transactional memory has significant runtime overhead.

More recently, there have been several proposals for lock inference. Initially,
[7] was an extension of the authors’ type checking techniques, where incomplete
synchronisation could be statically corrected. The authors admit that the added
locks could introduce deadlock, whereas the following proposals all guarantee
absence of deadlock through establishing a static order on lock allocations. A
from-scratch proposal [19] required guard annotations, which although allowed
the expression of instance locks as well as static locks, seemed not to be as
powerful as the object-object relationships in e.g. [8]. Additionally, programs
were rejected if the assignments interfered with the guarding discipline (they
did not translate paths as we do).

The approaches in [25,15] did not require guard annotations, using just points-
to information to indicate static locks. They handle assignment by increasing the
granularity so that the lock guarding the lvalue and rvalue are the same. While
[25] did have annotations, they were for the orthogonal purpose of partitioning an
object’s fields into separately-locked groups, as opposed to the typical approach
(which we follow) where all an objects fields are guarded by the same lock.
Allowing more parallelism, recent work [4,10] has allowed instance locks without
needing annotations, but only in special aliasing circumstances.

7 Conclusion and Future Work

By solving the deadlock problem with a runtime technique, we were able to take
instance locks rather than static locks. Instance locking is an opportunity for
finer granularity and more parallelism. We embrace this opportunity by statically
inferring accesses (in the form of paths), without having to reject assignments
to variables containing accessed objects. Unlike previous work, we do not merge
the locks of different objects if they once resided in the same variable.

In order to improve the speed of the analysis, it would be useful to analyse
a method in isolation. Then this method summary (consisting of new accesses
and translations) could instantiated in the various places the method is called.
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It may be necessary, when dealing with e.g. native code that can’t be analysed,
to provide such a summary manually, to act as a realistic stub.

Using thread-local-object and may-happen-in-parallel analyses such as those
in [10], it would be possible to omit some of the lock acquisitions. This would
reduce the overhead, and less time spent acquiring locks would mean fewer dead-
locks resolved at runtime. Also, if a group of locks are always acquired together,
or not at all, it makes sense to join them into a single lock, also reducing the
overhead of lock acquisition.

If it were possible to infer some form of ownership annotations [3], we might be
able to use instance locks instead of static locks to handle iterations over objects,
and non-trivial array indexes. We would like to try using points-to information,
both as a foundation for multilocks (instead of using type information as we
currently do), to see if this results in better granularity. Points-to information
could also be used by the path graph analysis, to avoid adding so many edges
at store CFG nodes.

Our aim was to create a finer-grained locking discipline than that used by
previous lock inference techniques. This paper describes our approach which
produced promising results. We are now moving our analysis to full Java, using
the Soot [24] framework.
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