
Fast Multi-Level Locks for Java
A Preliminary Performance Evaluation

Khilan Gudka Susan Eisenbach
Imperial College London

{khilan, susan}@imperial.ac.uk

Abstract
Atomic sections guarantee atomic and isolated execution of a block
of code. Transactional Memory can be used to implement them
but suffers from the inability to support system calls and has high
overhead. Lock inference is a pessimistic alternative that infers the
locks necessary to prevent thread interference. Our research looks
at lock inference techniques for Java programs.

An important aspect of the performance of a lock inference
approach is the efficiency of its runtime locks. In this paper, we
describe an implementation of the multi-level locks of Gray et
al [7] using Java’s Synchronizer framework [14] and present some
preliminary performance results for a number of workloads that
perform a varying proportion of fine-grained and coarse-grained
operations. We compare our lock implementation against Java’s
ReentrantReadWriteLock and the STM algorithms TL2 [6] and
LSA [17].

For fine-grained workloads, we show that multi-level locks per-
form similarly to ReentrantReadWriteLock but in workloads
that mix fine-grained and coarse-grained data operations, they
achieve better performance (upto 11x againstReentrantRead-

WriteLock and 3x against STM).

1. Introduction
Atomicity [15] is an important safety property for concurrent pro-
grams that provides strong guarantees against errors caused by
unanticipated thread interactions. Transactional Memory [13] is a
popular approach for providing atomicity but due to its inherent
dependence on rolling back execution, it restricts the language fea-
tures that can be used and additionally, imposes overheads due to
buffering and wasted computation.

Lock inference is a pessimistic alternative that statically infers
and inserts the locks necessary to prevent interference without
causing deadlock. Due to its compile-time nature, lock inference
must consider all possible execution paths and thus potentially
introduce more locks than necessary. Although this could result in
less concurrency, it has the advantages that irreversible operations
are allowed and performance overhead is significantly lower. An
important aspect of lock inference’s performance is the granularity
of its locks and how efficient lock acquisitions/releases are.

Our research [3, 4, 8] looks at producing a lock inference imple-
mentation for Java. The general approach is to use the Soot frame-
work [20] to analyse Java classes annotated with atomic sections
and replace these annotations with suitable locks. This entire pro-
cess consists of three stages: (i) infer object accesses, (ii) map ob-
ject accesses to their corresponding locks and (iii) instrument lock-
ing code. The first two have been described in previous work [4, 8].
A simple example of our lock inference approach is shown in Fig-
ure 1.

atomic {
x . f = 1 ;

}

converted to
−−−−−−−−→

l ock (x) ;
x . f = 1 ;
unlock (x) ;

Figure 1. Simple lock inference example

c l a s s Account {
i n t b a l a n c e ;
Account nex t ;

}

Account a = bank . head ;
atomic {

whi le (a != n u l l) {
a = a . nex t ;

}
}

(a) (b)

Figure 2. We don’t know the set of objects accessed in (b)

To achieve high-levels of concurrency, we acquire individual
instance locks. However, there are times when the set of objects
being accessed is unknown at compile-time. Consider the example
in Figure 2, which is a traversal through a linked list of bank
Account objects.

In general, we do not know how many accounts are in the list
and so can only assume that the while loop will iterate any number
of times, resulting in the infinite set:{a, a.next, a.next.next,
. . .}. This creates a problem because we can only acquire a finite
number of locks! One option is to infer some lockL and then at
runtime to interpret this as meaning “lock all instances of type
Account.” However, this will incur tremendous locking overhead
if there is a large number of accounts.

We solve this with two types of locks: (i)instance locks and
(ii) type locks. Instance locks protect individual instances whereas
type locks protect all instances of a particular type. We use multi-
granularity locking [7] to support both varieties of locks simultane-
ously. That is, an instance lock can only be acquired if the corre-
sponding type lock has not already been acquired and similarly,
a type lock can only be acquired if one or more instance locks
have not already been acquired. The multi-level lock implemen-
tation takes care of the orchestration. For the example in Figure 2,
we therefore lockAccount.

The key advantage of multi-level locks is that they reduce lock-
ing overhead when a large number of locks need to be acquired. We
produced an implementation of multi-level locks but found it to be
50x slower thansynchronized (using the counter microbench-
mark of Section 4). We therefore looked to achieve a much more
efficient implementation using the Synchronizer framework [14],
which is the focus of this paper. In particular:

• We implement the multi-level locks of Gray et al [7] in Java
using Doug Lea’s Synchronizer framework [14] (Sections 2-3).

H

b1 b2

a1 a2 a3 a4 a5 a6

Figure 3. Bank account example structured into multiple branches

• We evaluate performance using two microbenchmarks (Sec-
tion 4) and show that for fine-grained workloads, it provides
performance comparable to Java’sReentrantReadWrite-
Lock and for workloads containing a mixture of fine-grained
and coarse-grained operations, it outperforms bothReen-

trantReadWriteLock (upto 11x) and STM (upto 3x).

2. Multi-Level Locks
Multi-level locks [7] are useful when data is hierarchically struc-
tured and accesses of this data vary in granularity. They provide
low locking overhead when accessing a large amount of data and
high-concurrency when accessing small amounts of data.

To illustrate this, we structure the famous bank account example
so that a bank has a number of branches, which in turn have a
number of accounts. In Figure 3, there are two branches each
having three accounts. We assume that each node in the graph
has a lock associated with it. If we were using normal single-level
locks and wished to sum the balances of all accounts in branch
b2, we would first acquire a read lock onH, followed by branch
b2 and finally on all account objects inb2 (a4, a5 and a6). The
summation operation should be atomic and so all accounts must be
locked to prevent concurrent modifications, however if the number
of accounts is large this will result in a lot of lock acquisitions.

What is actually occurring here is that data are being accessed
at the granularity of a branch. Multi-level locks allow the entire
branch including all its accounts to be locked by acquiring only
b2’s lock. Note, acquiring the multi-level lock on an account has
the same behaviour as in the single-level lock case (as there are no
child nodes). In general, multi-level locks can be acquired in either
shared (S) or exclusive (X) mode, each of which implicitly locks
all child nodes in the same mode.

Given the hierarchical nature of multi-level locks, care has to be
taken to ensure that an ancestor node hasn’t already been locked in
a mode that is incompatible (e.g. trying to acquire the S lock onb1

whenH ’s X lock has already been acquired by another thread). To
prevent this, two additional modes are used:intention shared (IS)
andintention exclusive (IX), which indicate that S or X locking is
to be performed respectively further down the graph. For example,
before acquiring the S lock onb2, the IS lock has to be acquired on
H. As another example, suppose we wished to perform a deposit
on accounta5 and thus required acquiringa5’s X lock. In this case,
we would first acquire the IX lock onH, then the IX lock onb2

and then the X lock ona5. Figure 4(a) gives the partial ordering of
the different lock modes and Figure 4(b) shows which modes can
be simultaneously granted to distinct threads.

Note, an additional mode calledShared Intention Exclusive
(SIX) is also used to achieve more concurrency in the common case
where a thread may read many nodes in a sub-tree but only write
to a few. Normally, the thread would need to acquire the X lock on
the sub-tree but this is overly conservative, as it prevents concurrent
threads from performing reads lower down. Please refer to [7] for
the full details. In the next section, we describe our implementation.

X

SIX

S IX

IS

IS IX S SIX X
IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N

SIX Y N N N N
X N N N N N

(a) (b)

Figure 4. (a) Mode lattice and (b) compatibility matrix (from [7])

3. Implementation
The Synchronizer framework [14] provides common mechanics for
atomically managing synchronisation state, blocking and unblock-
ing threads, and queuing. Queues are non-blocking and all state
updates are performed using CAS. All these behaviours are en-
capsulated in the base classAbstractQueuedSynchronizer. To
implement a custom synchronizer, AQS is extended and thetry-

Acquire, tryRelease, tryAcquireShared and tryRelease-

Shared methods are overriden. AQS internally supports the two
modesexclusive andshared, however the framework is flexible as
to how a synchroniser’s modes map to them.

The multi-level locks have five modes they can be acquired in:
exclusive (X), shared (S), intention shared (IS), intention exclusive
(IX) and shared intention exclusive (SIX) [7]. Of these, SIX can be
implicitly represented by non-zero counts for both S and IX, hence
we only explicitly represent the four modes X, S, IS, IX allocating
16 bits for each of their counts (we use theLong version of AQS).
This allows up to 65535 reentrant acquires in each mode. We map
X to exclusive and the remaining three modes (S, IS, IX) to shared.
Note, the disambiguation of the latter three modes is made in the
tryAcquireShared andtryReleaseShared methods.

Per-thread counts are stored but thread-local lookups are expen-
sive so they are only queried if absolutely necessary (i.e. if query-
ing the global state is insufficient to determine if the request can be
satisfied).

4. Evaluation
We now evaluate the performance of our implementation. Our
experimental machine is an SGI Altix 350 containing 32 Itanium
2 CPUs (each running at 1.6GHz) of which we have access to 16.
The machine runs SUSE Linux Enterprise Server 10 64-bit and we
use Sun Java 1.6 (build 1.6.018-b0701) 64-bit.

We run the following two microbenchmarks:

• N threads increment a counter. The purpose of this is to test
scalability when there is very high contention. We show that
our implementation achieves performance similar toReen-

trantReadWriteLock.

• N threads perform various operations on a hierarchical bank
account model (see Figure 2) containing 10 branches each with
10 accounts. Here we test performance when performing fine-
grained or varying mixtures of fine-grained and coarse-grained
operations. We show that for workloads that contain a mixture
of fine-grained and coarse-grained data accesses, multi-level
locks achieve better performance.

We run each experiment for 1 to 16 threads and each thread
performs 1,000,000 operations. We report throughput as 1000’sof
operations per second and make comparisons with Java’sReen-

trantReadWriteLock as well as two STM algorithms: TL2 [6]
and LSA [17] (as implemented in Deuce STM v1.3 [11]). For a

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of threads

Multi-Level Locks
Read/Write Locks

STM-TL2
STM-LSA

Figure 5. Results for counter microbenchmark

fair comparison, we instruct Deuce not to instrument classes in the
java andsun packages.

4.1 Counter

The counter increment test is commonly used to measure the scal-
ability of a lock when under very high contention. Figure 5 con-
tains the results. Given that we use the same framework asReen-

trantReadWriteLock, we get similar performance. Furthermore,
the STMs suffer because of the large number of conflicts and
subsequent rollbacks that result. Note that although theReen-

trantReadWriteLock generally has slightly better throughput,
the trend is very similar and if averaged over more runs may give a
much closer line.

4.2 Bank

Our bank microbenchmark has 10 branches each with 10 accounts.
We perform the following four operations:

1. Withdraw money from a randomly chosen account.

2. Deposit money into a randomly chosen account.

3. Sum balances of all accounts in a randomly chosen branch.

4. Sum balances of all accounts across all branches.

These operations vary in the granularity of the data they access
(individual account, branch, whole bank). To get a feel for how
multi-level locks perform when operations of different granularities
are carried out concurrently and what types of workloads they
perform better for, we carry out three experiments where we vary
the balance of these four operations:

Experiment 1 (fine-grained) We only perform withdrawals and
deposits, and do so equally often (i.e. 50% each). This experi-
ment aims to gauge performance when only fine-grained operations
are being performed. The results are shown in Figure 6. Again, as
there are no coarse-grained accesses, we expect performance sim-
ilar to ReentrantReadWriteLock. We are not entirely sure why
the STMs perform better but one reason might be because the with-
drawal operation only updates the balance if the new balance is
non-negative. Consequently, if the balance is not updated, the with-
drawal operation is read-only and does not require updating ver-
sions.

Experiment 2 (medium-grained) We introduce the coarser-grained
summing operations into the mix but the majority are still fine-
grained operations. The balance is 40% withdrawals, 40% deposits,

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of threads

Multi-Level Locks
Read/Write Locks

STM-TL2
STM-LSA

Figure 6. Results for bank experiment 1

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of threads

Multi-Level Locks
Read/Write Locks

STM-TL2
STM-LSA

Figure 7. Results for bank experiment 2

10% summing over a random branch and 10% summing over all
branches. Figure 7 contains the results.

In the case ofReentrantReadWriteLock, the summations re-
quire locking a large number of accounts resulting in the 5x less
throughput. STM throughput varies between 0.6x and 0.9x that of
multi-level. This might be because the coarse-grained operations
are relatively large transactions thus increasing the possibility of
conflicts. However, the STM results are not as bad as forReen-

trantReadWriteLock, probably because TL2 and LSA acquires
locks late and so potentially more operations can proceed in paral-
lel.

Experiment 3 (coarse-grained) We test performance for when
the coarse-grained operations outnumber the fine-grained opera-
tions. The balance is 20% withdrawals, 20% deposits, 30% sum-
ming over a random branch and 30% summing over all branches.
The results are shown in Figure 7. In the case ofReentrantRead-

WriteLock, account objects are now locked far more frequently
leading to significant overhead and multi-level locks performing
upto 11x better. Furthermore, the majority of transactions now
touch a large number of accounts thus inducing many conflicts.
Consequently, multi-level locks perform upto 3x better than STM.
Unfortunately, we were only able to take results from a single run,
hence averaging over more runs may yield a smoother graph.

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

950

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of threads

Multi-Level Locks
Read/Write Locks

STM-TL2
STM-LSA

Figure 8. Results for bank experiment 3

5. Related Work
While software transactional memory [13] remains the popular
approach for implementing atomic sections, recent work [2, 4, 8–
10, 16, 21] has also looked at statically inferring locks sufficient for
atomic and deadlock-free execution. There is also a large body of
work on efficient lock implementations [1, 5, 12, 18, 19]. However,
the locks described in this paper are different because they assume
data is structured in a hierarchy and subsequently support locking
at different granularities.

6. Conclusion
Our research looks at lock inference techniques for Java programs.
Our particular approach uses type locks for when the set of ob-
ject accesses is unknown and per-instance locks otherwise. To sup-
port both locking granularities simultaneously, we use the multi-
granularity locking protocol as described by Gray et al [7].

An important factor in the performance of a lock inference ap-
proach is the performance of its locks. To achieve an efficient multi-
level lock implementation, we use Doug Lea’s Synchronizer frame-
work [14]. The main contributions of this paper are this implemen-
tation as well as a preliminary evaluation of its performance. We
have shown that for fine-grained operations, it performs similarly to
ReentrantReadWriteLock. However, when coarse-grained oper-
ations are concurrently performed, multi-level locks reduce locking
overhead and perform better.

We are aware that our type locks are very coarse and as future
work would like to explore more fine-grained alternatives, such as
using ownership types. Nevertheless, a hierarchy will still exist as
one or more objects will need to represent a set of objects, and so
an efficient multi-level lock implementation will still be necessary.

Acknowledgments
We are very grateful to Microsoft for funding this work. We would
also like to express thanks to Sophia Drossopoulou for very helpful
discussions and for proof reading drafts at short notice. A further
thanks to Tim Harris for discussions at the early stages of this
paper. Finally, we are indebted to members of theconcurrency-

interest list for their insights and helpful advice, namely Doug
Lea, David Holmes, Bryan Thompson and Tim Peierls.

References
[1] D. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: feath-

erweight synchronization for java.Proceedings of the ACM SIGPLAN

1998 conference on Programming language design and implementa-
tion, pages 258–268, 1998.

[2] S. Cherem, T. M. Chilimbi, and S. Gulwani. Inferring locks for atomic
sections. In R. Gupta and S. P. Amarasinghe, editors,PLDI, pages
304–315. ACM, 2008.

[3] D. Cunningham, S. Drossopoulou, and S. Eisenbach. Lock
Inference Proven Correct. InFTfJP, June 2008. URL
http://pubs.doc.ic.ac.uk/lock-inference-proven/.

[4] D. Cunningham, K. Gudka, and S. Eisenbach. Keep off the grass:
Locking the right path for atomicity. In L. J. Hendren, editor, CC,
volume 4959 ofLecture Notes in Computer Science, pages 276–290.
Springer, 2008.

[5] D. Dice and N. Shavit. TLRW: return of the read-write lock. In
Proceedings of the 4th ACM SIGPLAN Workshop on Transactional
Computing. Citeseer, 2009.

[6] D. Dice, O. Shalev, and N. Shavit. Transactional lockingii. Proc.
International Symposium on Distributed Computing, 2006.

[7] J. N. Gray, R. A. Lorie, and G. R. Putzolu. Granularity of locks in a
shared data base. InVLDB ’75: Proceedings of the 1st International
Conference on Very Large Data Bases, pages 428–451, New York, NY,
USA, 1975. ACM.

[8] K. Gudka, S. Eisenbach, and T. Harris. “Hello
World!”: Lock Inference in the Presence of Large
Libraries. Technical report, March 2010. URL
http://pubs.doc.ic.ac.uk/lock-inference-large-libraries/.

[9] R. L. Halpert, C. J. F. Pickett, and C. Verbrugge. Component-based
lock allocation. InPACT, pages 353–364. IEEE Computer Society,
2007.

[10] M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for atomic
sections. InProceedings of the First ACM SIGPLAN Workshop on
Languages Compilers, and Hardware Support for Transactional Com-
puting (TRANSACT), June 2006.

[11] G. Korland, N. Shavit, and P. Felber. Noninvasive Java concur-
rency with Deuce STM (poster). InSYSTOR ’09: The Israeli
Experimental Systems Conference, may 2009. Further details at
http://www.deucestm.org/.

[12] E. Koskinen and M. Herlihy. Dreadlocks: efficient deadlock detection.
In SPAA ’08: Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures, pages 297–303, New
York, NY, USA, 2008. ACM.

[13] J. Larus and R. Rajwar.Transactional Memory (Synthesis Lectures on
Computer Architecture). Morgan & Claypool Publishers, 2007.

[14] D. Lea. The java.util.concurrent synchronizer framework. Sci. Com-
put. Program., 58(3):293–309, 2005.

[15] D. B. Lomet. Process structuring, synchronization, andrecovery using
atomic actions.SIGPLAN Not., 12(3):128–137, 1977.

[16] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: synchro-
nization inference for atomic sections.ACM SIGPLAN Notices, 41(1):
346–358, 2006.

[17] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm with
eager validation. InProceedings of the 20th International Symposium
on Distributed Computing (DISC06, pages 284–298. Citeseer, 2006.

[18] K. Russell and D. Detlefs. Eliminating synchronization-related atomic
operations with biased locking and bulk rebiasing.ACM SIGPLAN
Notices, 41(10):272, 2006.

[19] M. Spear, A. Shriraman, L. Dalessandro, and M. Scott. Transactional
Mutex Locks. InSIGPLAN Workshop on Transactional Computing,
2009.

[20] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sun-
daresan. Soot - a java bytecode optimization framework. In S. A.
MacKay and J. H. Johnson, editors,CASCON, page 13. IBM, 1999.

[21] Y. Zhang, V. C. Sreedhar, W. Zhu, V. Sarkar, and G. R. Gao.Minimum
lock assignment: A method for exploiting concurrency among critical
sections. In J. N. Amaral, editor,LCPC, volume 5335 ofLecture Notes
in Computer Science, pages 141–155. Springer, 2008.

