
Exploring compartmentalisation hypotheses with SOAAP

Khilan Gudka∗, Robert N. M. Watson∗, Steven Hand∗, Ben Laurie† and Anil Madhavapeddy∗
∗University of Cambridge - first.last@cl.cam.ac.uk

†Google UK Ltd. - benl@google.com

Abstract—Application compartmentalisation decomposes
software into sandboxed components in order to mitigate
security vulnerabilities, and has proven effective in limiting
the impact of compromise. However, experience has shown
that adapting existing C-language software is difficult, often
leading to problems with correctness, performance, complexity,
and most critically, security. Security-Oriented Analysis of
Application Programs (SOAAP) is an in-progress research
project into new semi-automated techniques to support com-
partmentalisation. SOAAP employs a variety of static and
dynamic approaches, driven by source code annotations termed
compartmentalisation hypotheses, to help programmers evaluate
strategies for compartmentalising existing software.

Keywords-Privilege separation, sandbox, compartmentalisa-
tion, program analysis, capability system, object capabilities.

I. INTRODUCTION

This paper introduces the Security-Oriented Analysis of
Application Programs (SOAAP), a set of tools to sup-
port semi-automated compartmentalisation of C-language
Trusted Computing Base (TCB) components such as operat-
ing systems and web browsers. Application compartmental-
isation is the decomposition of software into multiple sand-
boxed components, each granted only the rights it requires to
operate, in order to mitigate security vulnerabilities. Com-
partmentalisation has proven to be a powerful technique,
and is used in applications ranging from OpenSSH [1] to the
Google Chrome web browser [2] to limit the rights available
to an attacker after a successful exploit.

However, compartmentalising software has proven quite
difficult. A previously “local” application becomes a dis-
tributed one, linked by a web of IPC channels, with the
programmability and debuggability challenges that implies.
Compartmentalisation necessarily changes the behaviour of
a program, but ideally only in cases where unexpected code
(e.g., injected via a buffer overflow attack) runs, rather than
in typical use. In our own prior work on Capsicum [3],
we experienced this first-hand, discovering that even simple
decompositions led to subtle bugs.

SOAAP is a set of analysis and transformation techniques
to help programmers introduce compartmentalisation into
existing C-language applications. There are many possible
decompositions that may (or may not) accomplish a vari-
ety of security goals, which must be traded off with the
correctness, performance, and complexity penalties of com-
partmentalisation. Programmers use C-language annotations,

termed compartmentalisation hypotheses, to evaluate pos-
sible decompositions without actually implementing them.
SOAAP reports potential bugs and interactions, helping
the programmer iteratively refine their compartmentalisation
plan. Such tools are critical to the further deployment of
compartmentalisation, whether it is with more conventional
operating system sandboxing systems such as Capsicum,
or experimental systems such as SRI International and the
University of Cambridge’s CHERI CPU architecture [4].

This paper introduces SOAAP early in the project life
cycle, and is intended to seek feedback from the security
research community. We propose a variety of approaches,
discuss our current implementation, and consider potential
evaluation techniques to use as the work matures.

II. APPLICATION COMPARTMENTALISATION

The end-user software ecosystem consists of an operat-
ing system kernel, hundreds of libraries, a window server,
language runtime environments, and web browsers, which
themselves include language interpreters, virtual machines,
and rendering engines. Collectively, this TCB consists of
many tens of millions of lines of trusted (but not trustworthy)
C and C++ code. Coarse hardware, OS, and language secu-
rity models mean that much of this code is security-critical:
a single flaw, such as an errant NULL pointer dereference
in the kernel, can expose all rights held by the user to
an attacker. The consequences of compromise are serious,
and include loss of data, release of personal or confidential
information, damage to system and data integrity, and even
total subversion of a users online presence by the attacker.

Vulnerabilities are widespread – the National Vulnerabil-
ity Database reported 16 new serious vulnerabilities a day
during the week of 16 July 2012 [5] – but there can be delays
of weeks or months before they are patched, and further
delays before users upgrade, leaving systems at risk. Further,
patches themselves may introduce new vulnerabilities.

Compartmentalising applications – breaking them into
components that run in sandboxes granted only selected
rights – has proven effective in mitigating security vulnera-
bilities. Abstractly, the approach appeals to the principle of
least privilege: following a compromise, only authority held
by the successfully exploited component is available to the
attacker, rather than the full rights of the application.

Figure 1 illustrates a compartmentalisation of the gzip

command-line compression tool using Capsicum: vulnerable

Capsicum logical applicationConventional UNIX process

Kernel

main
loop

vulnerable
compression

logic

Kernel

Process with
ambient authority

Capability mode process

main
loop

vulnerable
compression

logic

Selected rights
delegated to
sandbox via
capabilities

Figure 1. Whereas conventional gzip executes within a single process holding ambient user privilege, Capsicum’s gzip executes compression code
in a sandbox holding only delegated rights. This is a code-oriented compartmentalisation: selected risky code runs in a per-application instance sandbox.

compression code is placed in a sandbox and delegated only
required rights to source and target files, rather than the more
traditionally held ambient authority to all objects accessible
to the user. This technique is applied in Google’s Chrome
web browser, placing HTML rendering and JavaScript in-
terpretation into sandboxes isolated from the global file
system. Compartmentalisation is the only technique that we
are aware of that can successfully mitigate both known and
unknown classes of vulnerabilities, since it is not specific to
attack techniques, and is therefore one we would like to see
more widely deployed.

III. THE COMPARTMENTALISATION PROBLEM

Despite its clear and widely described benefits, compart-
mentalisation proves highly problematic in systems com-
bining the UNIX process model and C/C++ runtime envi-
ronments. Applications must be converted to employ OS
message passing rather than using a unified address space
for communication between components, sacrificing pro-
grammability and performance by making a local program-
ming problem into a distributed systems one.

As a result, large-scale compartmentalised applications
are difficult to design, write, debug, maintain, and extend,
raising serious questions about correctness, performance,
and most critically, security. A simple example arose in
Capsicum: we introduced a bug when compartmentalising
gzip because we did not propagate the compression level
command-line argument value to the sandbox: the global
variable was assigned to after the sandbox was fork()ed
and thus did not see the update, leading to incorrectness.

In addition to bugs in program correctness, bugs can also
prevent compartmentalisation from accomplishing its goals:
we have previously argued [6] that it is not the size of the
TCB that indicates how secure it is but the number and ways
untrusted code can interact with it. If sandboxes are allowed
to perform arbitrary privileged operations by sending mes-
sages to trusted processes, then compartmentalisation has
not provided any gains in security.

Validating that a compartmentalised program continues
to operate as originally intended, while also confirming
that compartmentalisation introduced the intended security

benefits, justifying security-performance tradeoffs, is a key
challenge to further deployment of compartmentalisation.

IV. SOAAP
In SOAAP, we are exploring and addressing these criti-

cal problems, cleaning up the process and mechanisms of
compartmentalisation. At a high-level, the goal of SOAAP
is to allow application programmers to more easily and
strategically trade-off performance, complexity, and security
through semi-automated analysis of possible compartmen-
talisations. This is done through the iterative annotation and
refinement of program source code using SOAAP’s static
and dynamic analysis tools, as illustrated in Figure 2.

A. Functional correctness

The compartmentalised version must preserve intended
program behaviour, while reducing the set of allowed execu-
tions corresponding to malicious activity – a process made
tricky because the only resource available is the (presumed
vulnerable) application source code. Today, this validation
is done through manual source code review and casual
testing. Such a process is error prone as even a missed data-
dependency can lead to significant functional bugs.

B. Hypothesis exploration

SOAAP presupposes the existence of a large set of possi-
ble application decompositions structured around the flow of
data and code over time, which select not just different trade-
offs between performance, complexity, and security, but also

SOAAP Toolchain

Static and
dynamic code
"risk" analysis Static and

dynamic
information flow

analysis and
taint tracking

SOAAP
recommends

modifications to
program or

hypotheses for
the programmer

Application and library
source code

Compartmentalisation
hypotheses as source

code annotations
provided by programmer

Static sandbox
characterisation

provided by vendor

Static and
dynamic call

graph analysis

Clang LLVM Valgrind

Programmer iteration

Figure 2. SOAAP’s engages the software developer in an iterative cycle
of compartmentalisation hypothesis development and testing.

different levels of effort during compartmentalisation. This
level of investment is a key factor in compartmentalisation
strategy: once a library or application has been sandboxed
in one way, it can be difficult and time-consuming to re-
compartmentalise in order to accomplish new security goals.

At one end of the spectrum, all application components
run in a single address space with no separation enforced
by the execution substrate. At the other end, the principle
of least privilege is enforced throughout: every function (or
even block of code) executes only with access to the memory
and services required to perform its function.

SOAAP allows different compartmentalisation hypotheses
to be explored without paying the full price of performing
compartmentalisation; it can also be used to find bugs in
already-compartmentalised applications. Programmer anno-
tation of hypotheses drives static and dynamic analysis,
reporting both potential bugs in correctness (e.g., non-
introduction of data consistency bugs), and whether or not
the annotated set of security goals is met (e.g., information
flow constraints). Annotations can describe which methods
should run in a sandbox, which global state and file de-
scriptors are allowed to be read or written by a sandbox,
how the platform’s sandbox facilities limit access to system
services, and what rights are available via RPC interfaces.
Given these annotations, SOAAP can identify missing data
dependencies, list unaccounted for system calls, enumerate
rights delegated to sandboxes, and warn about security bugs
such as information improperly leaked into sandboxes.

C. Automatic inference

Key to compartmentalising an application is understand-
ing the risks of its activities: compartmentalisation over-
head should be invested only where there is useful benefit.
However, understanding risk in code is tricky – it involves
expert intuitions about the nature of the application, and
significant knowledge of vulnerability classes and their his-
tory. For example, protocol parsing, image processing, and
data compression have all proven rich sources of exploitable
vulnerabilities. Therefore, an important goal of SOAAP
is to incorporate not just static notions of source code
risk (e.g., pointer arithmetic) but also dynamic information
flow analyses to determine which risky code is exposed to
untrustworthy sources. For example, this might help avoid
the complexity overhead of sandboxing poorly written but
unexposed configuration file parsing, while still highlighting
sandboxing opportunities for packet parsing.

D. Iterative compartmentalisation

We believe that there is a useful comparison to be made
between compartmentalising software and introducing par-
allelism into software through multi-threading: both involve
analyses of information flow, points of interaction, and the
programmability and debuggability risks of distributed com-
putation. In parallel programming, APIs such as pthreads [7]

fetch

libmd

libc

libcrypto

libfetch libssl depends

Figure 3. The FreeBSD fetch utility is a thin wrapper around
cryptography libraries and libfetch, a library supporting FTP, HTTP,
HTTPS, and local file retrieval. libfetch in turn relies on OpenSSL in
order to implement TLS. The bulk of code implementing many applications
is in large part in supporting libraries.

and OpenMP [8] allow programs to be incrementally par-
allelised as programmers iteratively identify performance
bottlenecks through profiling, optimising thread count and
synchronisation. The entire program does not need to be
made multi-threaded at once in order to gain significant per-
formance improvement – moreover, parallelising the entire
application at once is error-prone and almost intractable.

With SOAAP, we hope to afford similar incremental de-
velopment benefits: programmers iteratively annotate secu-
rity goals and compartmentalisation opportunities, address-
ing additional complexity only as they attempt to accomplish
additional security goals. SOAAP analysis will substitute for
profiling by providing feedback on potential incorrectness
both with respect to original program functionality and com-
partmentalisation goals. This approach appears promising
as programs do not need to be entirely decomposed at
once: a single mitigated vulnerability in a sandbox gives
an immediate improvement, so compartmentalisation effort
can be focused on the most critical areas.

V. FETCH AND LIBFETCH

To illustrate our ideas in SOAAP more concretely, we
will use FreeBSD’s fetch utility and associated libfetch;
its dependencies are illustrated in Figure 3. fetch is a
command-line tool for downloading files over FTP, HTTP,
and HTTP with TLS, and is used for package download, and
supports HTTP authentication and proxy servers. libfetch
encapsulates all protocol-specific communication; this is a
common structure – the majority of code in many appli-
cations comes from component or vendor-provided class li-
braries. fetch is an interesting example for several reasons:

• It is a general-purpose tool run with full user privilege.
• Processing URLs and HTTP headers is a source of

past vulnerabilities with significant exposure (i.e., to
untrusted web servers).

• OpenSSL, used for cryptographic processing, has had
significant past vulnerabilities.

• File servers and proxy servers may require authentica-
tion data that is, itself, sensitive.

Capability mode process

vulnerable
compression

logic

Capsicum logical application - object-oriented protection

Capability mode process

Kernel

Process with
ambient authority

main
loop

vulnerable
compression

logic

Selected rights
delegated to
instance-
specific
sandboxes via
capabilities

Capability mode process

vulnerable
compression

logic

Figure 4. In object-oriented compartmentalisation, compressed files are
processed in separate sandboxes. If a vulnerability is exploited by a zipped
file from one origin, it no longer has access to data from another origin.

• The interests of many different parties meet: the orig-
inator of file content, the server sourcing the file, any
intermediate proxy servers, and the local user.

• Fetch may process multiple URLs at a time, each
interacting with different end-files, servers, etc.

With such a diverse array of potentially exploitable vulner-
abilities and mutually untrusting parties, fetch encapsulates
in a simple program (and supporting libraries) much of the
design-space tradeoff of monolithic applications such as mail
readers, web browsers, and office suites.

VI. EXPLORING THE COMPARTMENTALISATION SPACE

fetch and libfetch are sufficiently complex (roughly
6KLOC) to support several different compartmentalisation
strategies, addressing different aspect of fetch’s behaviour,
represented interests, and attacker models. The compartmen-
talisation philosophy calls for a minimisation of privilege
assigned to each compartment, which requires identifying
elements of the application with security sensitivity – access
to system objects, sensitive data, etc.

Past privilege separation work (e.g., OpenSSH) and
policy-related access control work (e.g., SELinux) has fo-
cused to a greater extent on the exposure of system-
maintained objects such as sockets and files. However, we
are interested in finer-grained aspects of program operation
not visible to the operating system, such as the exposure of
authentication or keying material, and enforcing processing
pipeline independence, rather than treating untrustworthy
portions of applications as a single black box.

Likewise, we are interested not just in sandboxing HTTP
processing in fetch, but protecting integrity and confiden-
tiality between separate instances of downloads – preventing
the leaking of data of a file downloaded from one site back
to another site just because both URLs are fetched by a
single execution of fetch. This suggests an object-centered
compartmentalisation rather than a purely code-centered
one; Figure 4 illustrates how the compartmentalisation of
gzip using a single sandbox might be revised.

Figure 5 illustrates a spectrum of code-centered and data-
centered sandboxing strategies for fetch and libfetch.
On the X-axis, increasing sandboxing granularity for code
components offers successful attacks decreasing ability to
influence processing in other components. On the Y-axis,
introducing new compartments for successive URLs prevents
independent file retrievals from influencing or leaking the
outcomes of other requests. The illustrated cases are:

1) A single network service sandbox for libfetch limits
access to delegated files.

2) By separating FTP and HTTPS processing from one
another, vulnerabilities in one code path are prevented
from influencing processing in the other.

3) Further separation of HTTP from SSL processing
prevents leakage of a client authentication key in the
SSL sandbox into a compromised HTTP sandbox.

4) Decomposition of HTTP into two phases, authentica-
tion and GET, prevents a vulnerability in file download
from allowing access to a proxy password.

5) Isolating download sessions prevents information
about earlier downloads from being leaked into a
compromised sandbox, or corrupting later downloads.

As granularity increases across both dimensions, the result
is an object-oriented compartmentalisation: isolation is along
functional boundaries that capture self-contained program
elements – classes – and between different object instances,
preventing undesired interactions along either dimension.
This style of decomposition is well-aligned with the object-
capability security model promoted by compartmentalisa-
tion systems such as Capsicum, which support ephemeral
sandboxing and flexible delegation at run-time, but less-well
suited to statically configured systems such as SELinux [9] –
a restatement of an observation made in Capsicum, in which
the shipped SELinux policy for Chrome placed different ren-
derer instances were conflated in a single renderer domain,
rather than independent and ephemeral sandboxes.

VII. INCREMENTAL SANDBOXING AND TESTING

Given code- and data-oriented compartmentalisation
goals, SOAAP allows the programmer to specify annotations
capturing certain security objectives:

• Functions that should run sandboxed.
• Global state that should be accessible in sandboxes.
• Descriptors that can be read/written to by sandboxes.
• System calls accessible to sandboxes.
• Privileges available via RPC interfaces.
In essence, SOAAP annotations capture a sandboxing

policy within source code, keeping it close to the implemen-
tation and in the vocabulary of the application programmer.
A static/dynamic tool can then be used to validate whether
the proposed sandboxing would violate policies captured
by annotations (e.g. reading or writing a disallowed global
variable; or performing a disallowed operation on a file
descriptor, such as chmod()).

HTTP GET
sandbox

5. fetch

URL-specific sandbox
URL-specific sandbox

SSL
sandbox

HTTPS
sandbox

network
sandbox

Code-centred compartmentalisation
D

at
a-

ce
nt

er
ed

 c
om

pa
rtm

en
ta

lis
at

io
n

1. fetch
main loop

http

ssl

ftp

URL-specific sandbox

main loop

http

ssl

ftp

FTP
sandbox

2. fetch
main loop

http

ssl

ftp

HTTP
sandbox

3. fetch
main loop

http

ssl

FTP
sandbox

ftp

SSL
sandbox

HTTP auth
sandbox

4. fetch
main loop

http auth

ssl

FTP
sandbox

ftp http get

Object-oriented
compartmentalisation

Figure 5. fetch and libfetch can be compartmentalised along many different cut points, with different security, performance, and complexity
tradeoffs.

A necessary input to these tools is a characterisation of
the sandboxing technology, be it Capsicum, Seccomp, etc
– this will inform enforcement and performance tradeoff
analysis. This approach supports a narrative in which a
programmer incrementally identifies their security goals,
annotating methods to run in a sandbox, then identifying
state that should (or should not) be shared through iterative
executions of SOAAP tools. Once a desirable and consistent
compartmentalisation is identified, it can then be imple-
mented using techniques such as Capsicum.

VIII. THE TOOL

We have modified Clang/LLVM to implement new C-level
annotations that declare compartmentalisation hypotheses.
These annotations are checked statically using LLVM and
dynamically using Valgrind to validate functional correct-
ness, identify any behaviours that have not been specified
(e.g. reading from an unauthorised global variable, or per-
forming an undeclared file descriptor operation), validating
whether sandboxes are truly isolated (i.e. can informa-
tion flow unintentionally between sandboxes), and inferring
what privileges sandboxes hold through direct delegation or
via messages to/from other processes. Thus SOAAP tests
whether the proposed compartmentalisation would preserve
the intended behaviour of the original program and also anal-
yses the security implications, providing useful debugging
output to the programmer.

A. Annotations

SOAAP implements the following annotations:
• sandbox persistent, sandbox ephemeral on a C

function indicating that it should run in a sandbox. The

former indicates that the sandbox should be created dur-
ing process linkage (i.e., before main()), and persist
across invocations. The latter creates a fresh sandbox
each time the function is called.

• readvar, writevar on global variables; indicates that
the variable can be read and/or written from sandboxes.

• readfd, writefd on file descriptor function argu-
ments; indicates that a delegated file descriptor can be
read or written.

LLVM compiles these C annotations to Valgrind client
requests, which allow information to be communicated
to Valgrind at execution-time. A programmer then runs
the compiled program with the SOAAP-extended Valgrind,
which performs dynamic checking as the program executes.
Wherever possible, our goal is to check properties statically,
but due to the unsoundness of C, effects of inter-process
compartmentalisation, and the implications of library use,
we check some properties dynamically. For example, we
dynamically check for leakage of data between ephemeral
sandboxes. In the next two sections, we illustrate how these
annotations are used and how SOAAP is able to find some
bugs pertaining to both functional correctness and isolation.

B. Checking Functional Correctness

Figure 6 shows a simple contrived C program that per-
forms gzip-like compression. The example has been greatly
abstracted to keep the focus on annotations and finding bugs
using them.

The main() method opens the input and output files and
passes them to compress(), which performs the necessary
compression depending on the required compression level
indicated by cflag. Compression algorithms are a well-
known source of vulnerabilities and thus the programmer hy-

pothesises that this should run in a sandbox. For performance
reasons, they decide to have a sandbox that persists across
all requests, thus the sandbox persistent annotation is used.
They also annotate that the sandbox is only allowed to read
from the in file and write to the out file using the readfd
and writefd annotations respectively. As cflag is needed,
they also annotate that the sandbox should be allowed to
read from it using readvar. The programmer tries these
set of annotations as a first attempt and compiles and runs
it using SOAAP. SOAAP’s output is shown in Figure 7.

We identify two bugs. Firstly, that the write to the global
variable cflag will not be propagated to the sandbox,
as a sandbox persistent sandbox will have been created
before cflag is set from command line arguments – if the
sandbox mechanism is fork()-based, this bug might easily
go unnoticed (and was during early Capsicum experiments
with gzip!) as the linkage is still satisfied and compilation
would have succeeded. The second bug identifies that the
global variable vflag is read from the sandbox but has not
been annotated as such. This could either be an access that is
not supposed to be allowed, in which case the programmer
may decide to move the access outside of the sandbox.
Otherwise, it could be that they forgot to annotate it – in
a fork()-based programming environment, linkage would
have been satisfied but a stale value would have been used
if no explicit forwarding over IPC had been implemented.

C. Validating Isolation

SOAAP can also identify when persistent sandboxes may
leak heap memory between subsequent entries into the sand-
box. Consider the example sample program in Figure 8. This
is a stripped down version of the HTTP authentication code
performed by fetch, abstracted to highlight the annotations
and bugs we can find.

A persistent sandbox is created at the start of the main
process and is shared across all invocations of the func-
tions that are to run within them. Thus, if heap memory
is allocated and even freed, if it is not overwritten then
subsequent invocations executing in the same sandbox could
potentially access it. If such memory contained sensitive
information that only that invocation is allowed to see, then
there could be a breach of isolation and in such cases,
ephemeral sandboxes would give stronger guarantees. When
running this program with SOAAP, we produce the output
shown in Figure 9.

IX. PROPOSED EVALUATION DIRECTIONS

SOAAP is at a very preliminary stage but already with
simple analyses, we are able to find some useful bugs
(including one that we actually encountered during earlier
work on compartmentalisation) thus showing that there is
significant potential benefit from tools of this kind. Further-
more, the programmer can change the sandboxing policy
simply by changing the annotations making the testing cycle

1 int readvar cflag = 0; // compression level
2 int vflag = 0; // verbose flag
3

4 int main(int argc , char∗∗ argv) {
5 int in = open(argv [1], O RDONLY);
6 int out = open(argv [2], O WRONLY | O CREAT);
7 cflag = ...;
8 vflag = ...;
9 compress(in , out);

10 close (in);
11 close (out);
12 return 0;
13 }
14

15 sandbox persistent
16 int compress(int readfd in , int writefd out) {
17 // 1. read from in ...
18 // 2. compress depending on cflag value
19 switch(cflag) {
20 ...
21 }
22 // 3. write to out ...
23 if (vflag) {
24 // write some stats to stdout
25 }
26 return 0;
27 }

Figure 6. A simple gzip-like compression program that takes an input
and output file argument and optional flags for the compression level
and verbosity. This listing is abstracted to highlight the annotations and
how they can help a programmer find bugs in their compartmentalisation
hypothesis.

*** Warning ***
Global variable "cflag" is
written to in method main (compress.c:7)
after a sandbox has been forked, so the
updated value will not be seen.

at 0x8048827: main (compress.c:7)

*** Warning ***
Sandbox read global variable "vflag" in
method compress (compress.c:23), but it
is not allowed to.

at 0x8048892: compress (compress.c:23)
by 0x8048416: _start1 (in bin/compress)
by 0x8048387: (below main) (in bin/compress)

Figure 7. The results of running the simple annotated compress program
through SOAAP.

very quick. As SOAAP progresses, we will incorporate
more sophisticated analyses of information flow to track
the movement of sensitive data as well as characterisations
of sandboxing mechanisms to inform the programmer of
exactly what guarantees they can expect.

As the work matures, we anticipate evaluating it from a
number of perspectives:

1 int main(int argc , char∗∗ argv) {
2 ...
3 int socket = ...;
4 char∗ user = ...;
5 char∗ pass = ...;
6 http basic auth (socket , user , pass);
7 ...
8 return 0;
9 }

10

11 sandbox persistent
12 void http basic auth (int writefd sock, char∗ u, char∗ p) {
13 char∗ auth ;
14 asprintf (auth , ” Authorization Basic: %s:%s”, u, p);
15 write (sock, auth , strlen (auth));
16 free (auth);
17 }

Figure 8. A fetch-like program for performing HTTP basic authenti-
cation. SOAAP identifies that there is a memory leak between subsequent
invocations of http_basic_auth().

*** Warning ***
Persistent sandbox allocates heap memory,
which is accessible by subsequent requests.
Consider using an ephemeral sandbox.

at 0x5AF75: malloc (vg_replace_malloc.c:266)
by 0xF04DA: vasprintf (in /lib/libc.so.7)
by 0xEF57D: asprintf (in /lib/libc.so.7)
by 0x80488EC: http_basic_auth (http_auth.c:14)
by 0x80488A7: main (http_auth.c:6)

Figure 9. The results of running the HTTP authentication program through
SOAAP.

• How do false positive and negative rates arising out of
the unsoundness of C-language program analysis affect
the user experience?

• When applied to a back catalogue of known compart-
mentalisation bugs, are all found, and if not, why not?

• Are new bugs found in previously compartmentalised
programs, illustrating the benefits of this approach?

• Once a viable and desirable compartmentalisation is
identified, and then implemented by the programmer,
are there other problems that arise?

• Do performance predictions made by SOAAP prove
accurate?

• Can we scale up SOAAP-based exploration to both
very large collections of programs, such as the footprint
of a complete UNIX system, or individually large
(monolithic) applications such as web browsers and
mail clients?

• Although grounded in the vocabulary and problem
space of C-language software, similar types of prob-
lems have arisen in the compartmentalisation of soft-
ware in other languages (most notably Java) – can our
techniques be transposed to that space?

• What is the resulting compile-time and run-time over-
head of SOAAP analyses? How well do they scale
and are there optimisations to reduce their space-time
requirements? Although this overhead is only encoun-
tered during analysis, large running time and memory
requirements will impede their use and the speed of
compartmentalisation hypothesis iterations.

X. RELATED WORK

The principle of least privilege, which demands that
computations run only with the privileges they require, along
with the core security goals of protecting confidentiality,
integrity, and availability, is first enumerated by Saltzer and
Schroeder’s 1975 article The Protection of Information in
Computer Systems. Karger’s 1987 article on trojan horse
mitigation [10] lays the conceptual groundwork for privi-
lege separation, and later application compartmentalisation,
which became mainstream techniques applied to system-
level applications in the early 2000s with Provos’s work on
OpenSSH [1], and Kilpatrick’s Privman [11]. Application
compartmentalisation is later applied to user-level applica-
tions by Reis et al. in the Chrome web browser [2] and by
Watson et al. in Capsicum [3], where the focus is on intra-
application security concerns rather than system privileges.
All of these projects have reported on the difficulty in
applying compartmentalisation to C-language applications;
however, in this work we draw particularly on our own
experiences with Capsicum.

Automatic privilege separation has been discussed in the
literature – Brumley and Song’s Privtrans [12] and Bittau’s
Wedge [13] both explore techniques for assisting the pro-
grammer in identifying and exploiting compartmentalisation
opportunities. Privtrans takes a code-oriented view, focusing
on dividing operation between privileged and unprivileged
processes through program annotation, whereas Wedge relies
on programmer-provided memory type information. Harris’s
secure programming by parity games [14] reasons about the
defense characteristics of Capsicum-based application com-
partmentalisation where policies are represented by automata
checked on the interactions of compartments.

SOAAP builds significantly on these approaches by pro-
viding semi-automated tools promoting an object-capability
philosophy explored in HYDRA [15], and in many ways
comparable to Mettler et al.’s imposition of object-capability
semantics on Java via Joe-E [16] – albeit in the uncon-
strained execution environment of UNIX processes rather
than a type-safe and already object-oriented language run-
time or virtual machine, requiring the imposition of an
object-oriented structure. SOAAP additionally incorporates
analysis techniques grounded in information flow, past vul-
nerability information, and source code risk analysis, al-
lowing object-capability boundaries to align with critical
security constructs in the application and its library footprint.
Rather than implementing separation policies, SOAAP is

an exploration tool for programmers who may not fully
understand the code that they are separating, recognising
the complexity of large-scale applications with hundreds
or thousands of contributors and large third-party library
footprints.

XI. CONCLUSION & FUTURE WORK

This paper has described SOAAP, a set of techniques
and tools for exploring compartmentalisation hypotheses in
support of application compartmentalisation for vulnerability
mitigation. Despite promising early results, SOAAP remains
an in-progress research project. We anticipate a number of
future directions, including enriching the annotation scheme
to allow labelling of data sensitivity and code riskiness,
automatic inferring of sandboxing opportunities, applying
SOAAP to analysing existing hand-compartmentalisations
for bugs, and automated techniques for implementing hy-
pothesised compartmentalisations. We also hope to ap-
ply SOAAP to finer-grained compartmentalisations on the
CHERI processor, allowing us to add additional dimension-
ality to our static sandbox characterisations and performance
tradeoff analyses. Finally, a significant further effort will
occur in evaluating our approaches, including the degree to
which security benefit arises from real-world use, and the
accuracy of hypothesisation testing and results.

ACKNOWLEDGMENT

Thanks are due to Peter G. Neumann, Wei Ming Khoo,
Jonathan Anderson, and Pawel Jakub Dawidek for their
helpful contributions and feedback on this paper.

We gratefully acknowledge Google, Inc. for its sponsor-
ship. Portions of this work were sponsored by the Defense
Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-
10-C-0237. The views, opinions, and/or findings contained
in this report are those of the authors and should not be inter-
preted as representing the official views or policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense.

REFERENCES

[1] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege
escalation,” in Proceedings of the 12th conference on USENIX
Security Symposium - Volume 12, ser. SSYM’03. Berkeley,
CA, USA: USENIX Association, 2003, pp. 16–16.

[2] C. Reis and S. D. Gribble, “Isolating web programs in modern
browser architectures,” in EuroSys ’09: Proceedings of the
4th ACM European Conference on Computer Systems. New
York, NY, USA: ACM, 2009, pp. 219–232.

[3] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway,
“Capsicum: Practical capabilities for UNIX,” in Proceedings
of the 19th USENIX Security Symposium. Berkeley, CA,
USA: USENIX Association, 2010.

[4] R. N. Watson, P. G. Neumann, J. Woodruff, J. Anderson,
R. Anderson, N. Dave, B. Laurie, S. W. Moore, S. J. Mur-
doch, P. Paeps, M. Roe, and H. Saidi, “CHERI: a research
platform deconflating hardware virtualization and protection,”
in Workshop paper, Runtime Environments, Systems, Layering
and Virtualized Environments (RESoLVE 2012), March 2012.

[5] NIST Computer Security Resource Center, “National vulner-
ability database,” 2012, http://nvd.nist.gov/.

[6] D. G. Murray and S. Hand, “Privilege separation made easy:
trusting small libraries not big processes,” in Proceedings
of the 1st European Workshop on System Security, ser. EU-
ROSEC ’08. New York, NY, USA: ACM, 2008, pp. 40–46.

[7] B. Nichols, D. Buttlar, and J. P. Farrell, Pthreads program-
ming. Sebastopol, CA, USA: O’Reilly & Associates, Inc.,
1996.

[8] OpenMP Architecture Review Board , “OpenMP Application
Program Interface Version 3.1,” Tech. Rep., 2011.

[9] P. A. Loscocco and S. D. Smalley, “Integrating Flexible Sup-
port for Security Policies into the Linux Operating System,”
in Proceedings of the USENIX Annual Technical Conference.
USENIX Association, June 2001, pp. 29–42.

[10] P. A. Karger, “Limiting the damage potential of discretionary
trojan horses,” in IEEE Symposium on Security and Privacy,
1987, pp. 32–37.

[11] D. Kilpatrick, “Privman: A Library for Partitioning Applica-
tions,” in Proceedings of USENIX Annual Technical Confer-
ence. USENIX Association, 2003, pp. 273–284.

[12] D. Brumley and D. Song, “Privtrans: automatically partition-
ing programs for privilege separation,” in Proceedings of the
13th conference on USENIX Security Symposium - Volume 13,
ser. SSYM’04. Berkeley, CA, USA: USENIX Association,
2004, pp. 5–5.

[13] A. Bittau, P. Marchenko, M. Handley, and B. Karp,
“Wedge: Splitting Applications into Reduced-Privilege Com-
partments,” in Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation. USENIX
Association, 2008, pp. 309–322.

[14] W. R. Harris, B. Farley, S. Jha, and T. Reps, “Secure Program-
ming as a Parity Game,” University of Wisconsin Madison,
Tech. Rep. 1694, July 2011.

[15] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf,
“Policy/mechanism separation in Hydra,” in SOSP ’75: Pro-
ceedings of the fifth ACM Symposium on Operating Systems
Principles. New York, NY, USA: ACM, 1975, pp. 132–140.

[16] A. Mettler, D. Wagner, and T. Close, “Joe-E: A Security-
Oriented Subset of Java,” in Proceedings of the Network
and Distributed System Security Symposium, NDSS 2010,
February 2010.

