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Abstract

Atomicity is an important property for concurrent software, as it provides a stronger guarantee
against errors caused by unanticipated thread interactions than race-freedom does. However,
concurrency control in general is tricky to get right because current techniques are too low-level
and error-prone. With the introduction of multicore processors, the problems are compounded.
Consequently, a new software abstraction is gaining popularity to take care of concurrency
control and the enforcing of atomicity properties, called atomic sections.

One possible implementation of their semantics is to acquire a global lock upon entry to
each atomic section, ensuring that they execute in mutual exclusion. However, this cripples con-
currency, as non-interfering atomic sections cannot run in parallel. Therefore, from a language
designer’s point of view, the challenge is to implement atomic sections without compromising
performance.

This thesis explores the technique of lock inference, which infers a set of locks that attempt
to balance the requirements of maximal concurrency, minimal locking overhead and freedom
from deadlock. In particular, we look to improve upon the current state-of-the-art as well
as consider newer territory such as parallelism within an atomic section to exploit multicore
processors and a hybrid implementation with transactional memory.
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Chapter 1

Introduction

1.1 Motivation

Processor manufacturers can no longer continue to increase clock speeds at the same rate they
have done previously, due to the demands it places on power [44]. Hence, they are now using
increases in transistor density, as predicted by Moore’s law, to put multiple processing cores on a
chip. Furthermore, this trend is likely to continue for the foreseeable future. For example, Intel
predicts that by 2011, processors with 80-cores will be ready for commercial production [35].

In order to harness such parallel computing power as well as continue to get free increases
in software performance from increases in hardware performance, software programs need to be
concurrent [58, 59]. That is, structured as a set of logical activities that execute simultaneously.
For example, a web server consists of a number of workers enabling it to accept and process
multiple client requests at the same time.

At present, the vast majority of programs are sequential [58], performing only one logical
activity at any one time. One reason for this might be the lack of true parallelism, however, a
fundamentally more serious problem is that concurrent programming with current tech-
niques is inherently difficult and error-prone [47]. We inevitably need better abstractions.

1.1.1 Subtleties of concurrent programming

Concurrent programs consist of multiple threads of execution that reside within an operating
system process. Each thread has its own stack and CPU state, enabling them to be inde-
pendently scheduled. Moreover, to keep them lightweight, they share their owning process’s
resources, including its address space. However, this “common” memory is the root cause of all
problems associated with concurrent programming. In particular, if care is not taken to ensure
that such shared access is controlled, it can lead to interference, more commonly referred to as
a race condition [47]. This occurs when two or more threads access the same memory location
and at least one of the accesses is a write.

Figure 1.1 shows an example race condition whereby two threads T1 and T2 proceed to
increment a Counter object c concurrently by invoking its increment method. This method
reads the value of the counter into a register, adds 1 to it and then writes the updated value
back to memory. Figure 1.1(c) shows an example interleaving. Thread T1 reads the current
value of the counter (0) into a register but is then pre-empted by the scheduler which then runs
thread T2. T2 reads the value (0) into a register, increments it and writes the new value (1)
back to memory. T1 still thinks that the counter is 0 and hence when it is eventually run again,
it will also write the value 1, overwriting the update made by T2. This error is caused because
both threads are allowed uncontrolled access to shared memory, i.e. there is no synchronisation.
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Figure 1.1: An example race condition that occurs when two threads T1 and T2 proceed to increment
a counter at the same time.

class Counter {
int counter = 0 ;

void increment ( ) {
counter = counter + 1 ;

}
}

Counter c = new Counter ( ) ;
Thread T1 : c . increment ( ) ;
Thread T2 : c . increment ( ) ;

increment() execution steps:

read counter into register;
add 1 to register;
write register to counter ;

(a) (b)

Thread T1 Thread T2

1 counter is 0
2 read counter into register

3 counter is 0
4 read counter into register
5 add 1 to register
6 write register to counter

7 counter is 1
8 add 1 to register
9 write register to counter

10 counter is 1

(c)

As a result, a race condition occurs and an update is lost.

Such interference can be extremely difficult to detect and debug because their occurrence
depends on the way the operations of different threads are interleaved, which is non-deterministic
and can potentially have an infinite number of possible variations. As a result, they can remain
unexposed during testing, only to appear after the product has been rolled out into production
where it can potentially lead to disastrous consequences [37, 32, 49].

1.1.2 Preventing race-conditions

At present, programmers prevent such race conditions by ensuring that conflicting accesses to
shared data are mutually exclusive, typically enforced using locks. Each thread must acquire
the lock associated with a datum before accessing it. If the lock is currently being held by
another thread, it is not allowed to continue until that thread releases it. In this way, threads
are prevented from performing conflicting operations at the same time and thus interfering with
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Figure 1.2: Race free version of the example given in Figure 1.1.

class Counter {
int counter = 0 ;

synchronized void increment ( ) {
counter = counter + 1 ;

}
}

Counter c = new Counter ( ) ;
Thread T1 : c . increment ( ) ;
Thread T2 : c . increment ( ) ;

each other.

Figure 1.2 shows a race-free version of our counter example. The synchronized keyword is
Java syntax that requires the invoking thread to acquire first an exclusive lock on the receiver
object before proceeding. If the lock is currently unavailable, the requesting thread is blocked
and placed into a queue. When the lock is released, it is passed to a waiting thread which is
then allowed to proceed. Going back to our example, now thread T2 will not be allowed to
execute increment until T1 has finished because only then can it acquire the lock on c. Thus,
invocations of increment are now serialised and races are prevented.

1.1.3 Race-freedom as a non-interference property

Ensuring that concurrent software does not exhibit erroneous behaviour due to thread interac-
tions has traditionally been interpreted as meaning that programs must be race-free. However,
race-freedom is not sufficient to ensure the absence of such errors. To illustrate this, we extend
our Counter class to include a method reset, which resets the value of the counter to that
provided as an argument to it. Moreover, it is declared synchronized to prevent races.

Figure 1.3(a) shows the updated Counter class as well as an example scenario involving two
counters (c1 and c2) and two threads (T1 and T2). Thread T1 wishes to reset both counters
with the value 1, while T2 proceeds to reset them with value 2. It is worth noting here that the
intention is that both counters are reset together, regardless of the order in which the threads
are run. That is, whether T1’s double reset persists or T2’s is a matter of timing. However, we
want the resets to be performed in a pair. Figure 1.3(b) gives an example interleaving of their
calls to reset. T1 begins by resetting counter c1 to 1 but is preempted before it can update
c2. Thread T2 is then run to completion. At this point, both counters have the value 2, which
is a valid outcome of our execution. However, T1 resumes and resets c2 to 1. The final result
is that c1.counter is 2 and c2.counter is 1. This does not represent T1’s intention nor T2’s.

Such incorrect behaviour occurs because thread T2 is able to modify counter c2 while T1 is
performing its double reset. This is possible because although T1’s invocations of c1.reset(1)
and c2.reset(1) individually ensure mutually exclusive access to c1 and c2 respectively, their
composition does not. As a result, T2’s operations can be interleaved between them leading to
the higher-level interference. Note that there are no races, as reset is declared synchronized.
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Figure 1.3: An example illustrating that asserting race-freedom is not enough to ensure freedom
from all errors caused by thread interactions.

class Counter {
// . . . as above . . .
synchronized void r e s e t ( int val ) {

counter = val ;
}

}

Counter c1 = new Counter ( ) ;
Counter c2 = new Counter ( ) ;

Thread T1 :
c1 . r e s e t ( 1 ) ;
c2 . r e s e t ( 1 ) ;

Thread T2 :
c1 . r e s e t ( 2 ) ;
c2 . r e s e t ( 2 ) ;

T1 T2

1 c1.reset(1)
2 c1.reset(2)
3 c2.reset(2)
4 c2.reset(1)

c1.counter c2.counter

2 1

(a) (b)

1.1.4 Enter the world of atomicity

To assert that such interferences do not occur, we need a stronger property that ensures that
threads cannot interleave conflicting operations while a block of code is executing, that is the
atomicity of code blocks. A code block is said to be atomic if the result of any concurrent
execution involving it is equivalent to the sequential case. This means that in our example of
Figure 1.3, the result of T1 and T2 executing concurrently would be the same as if T1 and T2

executed one after the other, leaving both counters either with value 1 or 2. Atomicity is a very
powerful concept, as it enables us to reason about a program’s behaviour at a simpler level. It
abstracts away the interleavings of different threads (even though in reality, interleaving will
still occur) enabling us to think about a program sequentially.

A number of techniques exist to verify atomicity of code blocks such as: type checking
[15, 14], type inference [13], model checking [27], theorem proving [19] and run-time analysis
[12, 61]. However, enforcing atomicity is still left to the programmer, usually using locks.
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In order to make the double resets of T1 and T2 in Figure 1.3 atomic, each thread would need
to first acquire locks on both counters before proceeding. This would prevent the other thread
from interleaving conflicting calls to reset. Figure 1.4(a) gives one possible implementation.

However, Figure 1.4(b) shows yet another problem that arises from this race-free and atomic
version. Thread T1 acquires the lock on c1 but is preempted before it tries to lock c2. T2 is
then allowed to run, however, it decides to acquire the locks in the opposite order. It locks c2

and attempts to lock c1 but cannot as T1 has already done so. Subsequently, T2 is blocked
waiting for T1 to release the lock on c1. T1 resumes and attempts to lock c2, however cannot
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Figure 1.4: A version of Figure 1.3, whereby the compound resets of each thread occur in mutual
exclusion, enforced using locks. However, this example illustrates the additional problem of deadlock.

Thread T1 :
synchronized ( c1 ) {

synchronized ( c2 ) {
c1 . r e s e t ( 1 ) ;
c2 . r e s e t ( 1 ) ;

}
}

Thread T2 :
synchronized ( c2 ) {

synchronized ( c1 ) {
c1 . r e s e t ( 2 ) ;
c2 . r e s e t ( 2 ) ;

}
}

T1 T2

1 lock c1
2 lock c2
3 lock c1
4 lock c2 waiting
5 waiting waiting

(a) (b)

because T2 holds the lock. As a result, it is blocked waiting for T2 to release c2. Hence, we now
have a situation whereby both threads are stuck: T1 is waiting for T2 to release the lock on c2

and T2 is waiting for T1 to release the lock on c1. Neither thread can continue and the system
has come to a standstill. This state is known as deadlock.

Other problems that can occur due to locks include priority inversion [33], livelock [16]
and convoying [10, 63]. Furthermore, forgetting to acquire a lock leads round-circle back to the
problem of races again. The worst part is that these problems are hard to detect at compile-time
and their impact at run-time can be disastrous [32, 37, 49].

1.1.6 Incompleteness

In addition to the problems that arise when trying to ensure atomicity, it may not actually
always be possible to do so. Consider if instead we were invoking a method on an object that
was an instance of some API class. Acquiring a lock on this object may not be sufficient if the
method accesses other objects via instance fields, as we would need to acquire locks on those
too in case they are accessible from other threads. However, accessing those fields would break
encapsulation and might not even be possible if they are private. One solution would be for the
class to provide a Lock() method that locks all its fields. However, this breaks abstraction and
reduces cohesion because now the class has to provide operations that are not directly related
to its purpose.

In summary, although atomicity allows us to more confidently assert the absence of errors
due to thread interactions, programmers are still responsible for ensuring it. With current
abstractions, this may not even be possible due to language features such as encapsulation.
In fact, even if it is possible, modularity is broken thus increasing the complexity of code
maintenance, while other problems such as deadlock are also increasingly likely.

1.1.7 A better abstraction for concurrency

This has led researchers to a language-level abstraction for enforcing the atomicity of a group of
statements. Atomic sections [40] are blocks of code that appear to other threads to execute in
a single step, with the details of how this is achieved being taken care of by the compiler and/or
run-time. This is a significant improvement over current abstractions, as atomic sections aim to
completely relieve the programmer from worrying about concurrency control and consequently
eliminate the associated complexities. They enable programmers to think in terms of single-
threaded semantics, also removing the need to make classes/libraries thread safe. Furthermore,
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Figure 1.5: An implementation of the Counter class using atomic sections.

class Counter {
int counter = 0 ;

atomic void increment ( ) {
counter = counter + 1 ;

}

atomic void r e s e t ( int val ) {
counter = val ;

}
}

Thread T1 :
atomic {

c1 . r e s e t ( 1 ) ;
c2 . r e s e t ( 1 ) ;

}

Thread T2 :
atomic {

c1 . r e s e t ( 2 ) ;
c2 . r e s e t ( 2 ) ;

}

(a) (b)

error handling is considerably simplified because code within an atomic section is guaranteed
to execute without interference from other threads making error recovery like in the sequential
case. They are also composable; that is, two or more calls to atomic methods can be made
atomic by wrapping them inside an atomic section. There is no need to worry about which
objects will be accessed and in what order, as protecting them and avoiding deadlock is taken
care of by the implementation. Therefore, they also promote modularity.

However, what makes them even more appealing is that they don’t require the programmer
to change the way he/she codes. In fact, they simplify code making it much more intuitive and
easier to maintain. Furthermore, programmer intent is mostly atomicity when using locks [15],
hence atomic sections enable programmers to more accurately specify their intentions. Fig-
ure 1.5 shows an implementation of our double-counter-reset example using atomic sections
(denoted using the atomic keyword). Moreover, note that there is no longer the potential for
deadlock.

1.1.8 Implementing atomic sections

Atomic sections are quite an abstract notion, giving language implementors a lot of freedom in
how they are realised. A number of techniques have been proposed over the years, including:

• Interrupts: Proposed in Lomet’s seminal paper [40], whereby interrupts are disabled
while a thread executes inside an atomic section.

• Co-operative scheduling: Involves intelligently scheduling threads such that their in-
terleavings ensure atomicity [56].

• Object proxying: A very limited technique whereby proxy objects are used to perform
lock acquisitions before object invocations at runtime [11].

• Transactional memory: Atomic sections are executed as database-style transactions.
In particular, memory updates are buffered until the end of the atomic section and subse-
quently committed in ‘one step’ if conflicting updates have not been performed by other
threads. Otherwise, the changes are rolled back (i.e. the buffer is discarded) and the
atomic section is re-executed [36].
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• Lock inference: An approach that statically infers which locks need to be acquired to
ensure atomicity and transparently inserts acquire and release statements in such a way
that deadlock is avoided [29, 41, 5, 21, 6, 8, 65].

• Hybrids: Approaches that combine several of the above techniques. For example, using
locks when there is no contention or when an atomic section contains an irreversible
operation, and transactions otherwise [62].

While nobody yet knows what is the best way of implementing atomic sections, transactional
memory seems to be the most popular approach. However, it has a number of drawbacks,
including: poor support for irreversible operations such as I/O and system calls, high run-time
overheads in both contended and uncontended cases and a large amount of wasted computation.

Lock inference is a promising alternative, as it has a number of advantages over transactional
memory: firstly, it doesn’t limit expressiveness, secondly, it provides excellent performance in
the common case of where there is no contention and thirdly, it has little run-time overhead.
Initially, it may seem that we are re-inviting the problems associated with locks, however, a
combination of static analyses and run-time support are typically used to overcome them.

There are a number of challenges that this approach faces:

• Maximising concurrency

• Ensuring freedom from deadlock

• Minimising the number of inferred locks

However, these three goals can be in conflict. For example, to maximise concurrency, the
locks should be fine-grained and the number of locks should scale with the number of objects.
However, this increases the run-time overhead caused by acquire and release operations. Fur-
thermore, there is now a greater chance of deadlock. On the other hand, we could use a single
global lock to protect all atomic sections, acquired on the entry and released on the exit of
each. This gives us a minimal number of locks and eliminates deadlock, however, it prevents
any concurrency whatsoever. Hence, we need to strike a balance. Moreover, this balance will
probably differ depending on the application. This thesis will look at extending work done in
this area.

1.2 Contributions

During the PhD, I hope to make the following contributions:

• Improve existing lock inference techniques to allow concurrency in scenarios where they
fail.

• Formally investigate whether the semantics given by a lock inference implementation
matches the higher-level semantics expected by the programmer using atomic sections.
In particular, we ask the question of whether they adhere to the memory model when
accesses to an object occur both within and outside an atomic section.

• Look into additional ways of improving the performance and expressiveness supported by
lock inference:

– Supporting parallelism, such as the fork-join model, within the atomic section. This
area has not yet been looked at by existing lock inference work.
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– A hybrid lock inference/transactional system, which may use dynamic feedback or
heuristics to determine where locks or transactions would be more beneficial. Cur-
rent approaches typically execute existing monitors, such as those declared using
synchronized, transactionally or using the associated lock. However, nothing has
been done in conjunction with inferring locks.
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Chapter 2

Background

Atomic sections were first proposed by Lomet in his 1977 paper [40]. However, they have
only recently come into the forefront of programming language research. The last five years in
particular have seen a huge upsurge in interest, with the majority of contributions being made
in the sub-area of transactional memory. Lock inference has also attracted contributions and is
seen as an important alternative and perhaps ultimately a complementary approach. In fact,
the most effective implementation of atomic sections will probably involve a marriage of the
two techniques.

In this chapter, we will review the relevant literature giving focus to lock inference rather
than transactional memory, as the former is the basis of the PhD. However, we begin by looking
more closely at the semantics of atomic sections.

2.1 Semantics of atomic sections

Conceptually, atomic sections execute as if in ‘one step,’ abstracting away the notion of inter-
leavings. However, enforcing such a guarantee is not always entirely possible, due to limitations
in hardware, the nature of the implementation technique or the performance degradation that
would result. To make the particular atomicity guarantee offered by an implementation explicit,
two terms have been defined in the literature [36, 4]:

• Strong atomicity: the intuitive meaning of atomic sections as appearing to execute
atomically to all other operations in the program regardless of whether they are in atomic
sections or not.

• Weak atomicity: atomicity is only guaranteed with respect to other atomic sections.

Ideally, atomic sections should provide strong atomicity, as this is what programmers expect
and is what makes them such a useful abstraction. However, the performance degradation that
results from enforcing it may be too high thus resulting in a trade off between performance and
ease of programming. Although, a number of optimisations have been proposed for transactional
memory to reduce this overhead [2, 30, 55], with [2] reporting performance within 25% of an
implementation only guaranteeing weak atomicity.

It should be noted that providing strong atomicity doesn’t mean that an implementation
has to directly support it. In fact, an implementation may only provide weak atomicity but
strengthen it by using a static analysis to detect conflicting shared accesses occurring outside
atomic sections and subsequently wrap them inside atomic{}. Recent work [1] has looked at a
dynamic approach which verifies, at run-time, that atomic accesses of a datum never coincide
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with non-atomic accesses of it. That is, during its life-time, it can be accessed both inside
atomic sections (termed a protected access) and outside (termed an unprotected access) but
never both simultaneously. If while in protected mode, an unprotected access never occurs; and
while in unprotected mode, a protected access never occurs, then the program will run with
strong atomicity semantics. They call this dynamic separation.

Lock inference techniques unanimously assume that no shared accesses occur outside atomic
sections, consequently avoiding this debate. Although, a static analysis like that described above
could be used.

2.2 Related areas

In this section, we briefly review related areas.

2.2.1 Transactional memory

Transactional memory is a form of optimistic concurrency control whereby the key idea is to
buffer memory updates during execution and only perform them on memory at the end if the
locations that were accessed have not been modified by another thread. If they have, the
would-be updates are discarded (termed rollback) and the transaction is re-executed [25].

To prevent interference while a transaction is updating memory (termed commit), it first
acquires ownership of the locations to be updated. If a location is owned by another transac-
tion, it will rollback and be re-executed. Ownership is released when the updates have been
completed. In this way, atomicity is achieved without blocking threads [24].

Transactional memory provides a number of advantages over traditional blocking primitives
such as locks:

• No deadlock, priority inversion or convoying: as there are no locks! Although, in
theory a different form of priority inversion could occur if a high priority thread was rolled
back due to an update made by a low priority thread.

• More concurrency: recall that with locks, the amount of concurrency possible is de-
pendent on the locking granularity. Transactional memory provides the finest possible
granularity (at the memory-word level), resulting in optimal parallelism. However, this
comes at the cost of buffering overheads.

• Automatic error handling: Memory updates are automatically undone upon rollback,
reducing the need for error handling code [22].

• No starvation: transactions are not held up waiting for blocked/non-terminating trans-
actions, as they are allowed to proceed in parallel even if they perform conflicting opera-
tions.

However, these advantages rely on being able to rollback. This proves to be a huge limitation
for atomic sections as it leads to the following drawbacks:

• Irreversible operations: Transactions cannot contain irreversible operations such as
I/O because they cannot be rolled-back. Buffering is one proposed solution [23, 30],
but requires rewriting I/O libraries and is not applicable in all situations. For example,
consider a handshake with a remote server. Some implementations forbid irreversible
actions using the type system [25], while others throw exceptions [50]. However, these are
not practical in general.
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Figure 2.1: (a) is a program that calculates double the sum of 1 to 10. (b) is its control flow graph.

s = 0 ;
i = 1 ;
wh i le ( i <= 10) {

s = s + i ;
i = i + 1 ; }

s = s ∗ 2 ;

(a) (b)

• Performance overhead: Significant overhead is incurred due to buffering, validating
that accessed locations have not been modified and committing [24].

• Wasted computation: A transaction that is later rolled-back is wasted computation.
In one benchmark [31], tens of rollbacks occurred per second.

Performance has been the main focus of transactional memory research over the last few
years. A lot of progress has been made, such as removing the requirement that transactions
be non-blocking [7, 9, 26, 31, 53], coarsening the granularity from memory-word to object
[42, 18, 17, 28, 3, 31, 26] and making application-specific the decision made when a transaction
detects that its accessed locations have been modified [54].

However, current state-of-the-art implementations still require rollback for avoiding deadlock
and starvation [31]. Furthermore, the problem of I/O remains.

2.2.2 Program analysis

Program analysis allows us to approximate run-time behaviours of programs at compile-time.
It is used in lock inference to determine which objects are being accessed and what their cor-
responding locks are. This section provides a very brief overview of relevant concepts. For a
detailed account, please refer to [46].

2.2.2.1 Data flow analysis

The approach to program analysis that is of relevance to this project is data flow analysis. In this
technique, it is customary to think of a program as a graph: the nodes are simple statements
or expressions and the edges describe how control might pass from one simple statement to
another. This is called a control flow graph. Figure 2.1(b) shows an example graph for a
program that calculates double the sum of 1 to 10. Nodes are labelled uniquely. Notice the two
edges coming out of the while condition corresponding to where flow goes to when it is true
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Figure 2.2: Simple program to demonstrate the difference between may and must analyses.

i n t i ;
i f (b )

i = 1 ;
i = i ∗ 2 ;

(a) (b)

or false. At compile-time, we typically cannot determine exactly which edges will be followed,
therefore we must consider all of them. ‘If’ statements are similar.

In a nutshell, data flow analysis works by pushing sets of ‘things’ through the graph un-
til they stabilise. When a node receives data from immediately preceding nodes, called entry
information, it applies the effect of its statement and passes the resulting set, called exit infor-
mation, to its immediate successors. If a node has multiple predecessors, like 3 in Figure 2.1(b),
the incoming data are first combined using set union or intersection depending on the type of
analysis.

There are broadly four types of data flow analyses depending on whether (a) we want
information that is valid along all paths from the start of the program to a node or only some
of them and (b) we want to know something about code before nodes or after them. For (a),
consider the example given in Figure 2.2 and suppose we want to know whether variable i has
been initialised before reaching 3. The start node of the program is 1. There are two paths
from 1 to 3: 1 → 2 → 3 and 1 → 3. i is initialised along the first but not the second. Therefore,
we deduce i may not be initialised. This is called a must analysis because we only assert i is
initialised if all paths from 1 to 3 initialise i. The key point here is that we consider all paths.
In this type of analysis, data from immediate predecessors are combined using set intersection.
If instead we wish to determine what value i might have, we union the result of each path.
This is called a may analysis. In this, data from immediate predecessors are combined using
set union.

Sometimes we will want to calculate information about paths reaching a node and other
times about paths leaving a node. For example, determining if i is initialised at 3 in Figure 2.2
requires looking at paths reaching it. On the other hand, determining what objects are accessed
in an atomic section, requires looking at paths leaving the start of the section. In the former,
data is passed from the start of the program downwards. This is called a forwards analysis.
In the latter, data is passed from the end of the program upwards. This is called a backwards
analysis. Note that the predecessor of a node in a forwards analysis will be the successor of a
node in a backwards analysis. Do not confuse this with control flow, we are talking about data
flow.

This leads to the following four types of data flow analyses:

• Forwards, must

• Forwards, may
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Figure 2.3: Iterative algorithm for computing entry and exit sets.

whi le ( entry and ex i t s e t s change ) {
f o r each node n {

// c a l c u l a t e new entry s e t
entry ′ (n) = { } ;
f o r each pr edece s so r node p o f n

entry ′ (n) = entry ′ (n) + ex i t (p ) ;

// c a l c u l a t e new ex i t s e t
e x i t ′ (n) = fn ( entry (n ) ) ; } }

• Backwards, must

• Backwards, may

Entry and exit information are commonly referred to as the entry and exit sets of the node.
In a forwards analysis, the entry sets give us the final information we want, while in a backwards
analysis it is the exit sets. Note that while the notion of predecessor and successor get swapped
around, entry and exit sets do not. That is, in a backwards analysis the exit set is calculated
by combining the results of its predecessors and the entry set is calculated by pushing this data
‘through’ the node. This implies that the notion of ‘entry’ and ‘exit’ remain consistent with the
control flow graph.

To calculate the final entry and exit sets, an iterative algorithm is used. Figure 2.3 gives it
in pseudo-code.

Here we use ‘′’ to distinguish between the current and previous iterations. The function fn
applies the effect of n’s statement to its previous entry set. It is known as a transfer function.
This function will typically kill some incoming data and add any additional information created
by this node. These are called its kill and gen sets respectively. One can express fn in terms of
these sets as follows:

fn(d) = (d \ killn(d)) ∪ genn(d)

The algorithm terminates when every entry and exit set does not change between iterations.
This is referred to as having reached a fixed point.

2.2.2.2 Intraprocedural versus interprocedural

So far we have only looked at data flow analysis in a single method. This is known as intrapro-
cedural data flow analysis. Lock inference also needs to determine object accesses in methods
called from atomic sections because these need to be protected too. When we consider data
flow across methods, this is called interprocedural data flow analysis.

The key idea is that data to a node n that performs a method call (called a caller node)
flows to the start of the corresponding method m and exit information from m’s last node flows
back to n. Calculating the entry set is the same as in the intraprocedural case, but the exit set
is now calculated from both the entry set and the information flowing back from m. Figure 2.4
gives a graphical description. Here, d is the entry information for n and d’ is the data flowing
back from m.
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Figure 2.4: Interprocedural analysis.

Figure 2.5: Problem of valid paths.

i n t m( in t x ) {
i n t r ;
i f ( x == 0)

r = 1 ;
e l s e

r = m(x−1);
r eturn r ;

}

void main ( i n t n) {
m(n ) ;

}

(a) (b)

Interprocedural analysis introduces two new functions f1
n(d) and f2

n(d, d′). f1
n modifies the

incoming data as required for passing to the method. This might include removing information
about local variables and renaming arguments to the corresponding formal parameter names.
f2

n modifies the data flowing back from the method as appropriate for returning from it and
combines it with the entry information for n. The former might include renaming formal
parameters. The entry information may also be modified based on the returning data.

2.2.2.3 Valid paths through the program

Armed with these two functions, we could carry out the interprocedural analysis like in the
intraprocedural case. However, this turns out to be rather naive because it allows data to flow
along paths that do not correspond to a run of the program. Consider the example program in
Figure 2.5. At run-time, there will typically be a stack of method calls that are waiting to be
returned to. Execution always returns to the most recent one first, i.e. the one at the top of
stack. However, notice that in Figure 2.5 there is nothing stopping the analysis from considering
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the path 1 → 2 → 4 → 2 → 3 → 5 → 1 corresponding to calling m twice but returning only
once. This is a problem because it can lead to incorrect solutions.

We can restrict consideration to valid paths by associating call stacks with data. This will
typically be a string of labels corresponding to method call nodes with the most recent on the
right. This string is called a calling context [57]. Now, data is a set of functions mapping
contexts to the data flow information for that context. Note that we may have several contexts
at a time because there may be several ways of reaching a method from the start of the program.
The two key things that make using contexts work are:

• Before passing data to a method, append the caller node’s label to all contexts. This
indicates that it is now the most recent method call.

• For all contexts passed back by the method, only keep those whose right most label is this
node. This ensures that we don’t pass data back along the wrong paths. To indicate we
have returned from the call, remove this right most label.

An analysis that uses contexts is called context-sensitive.

2.2.2.4 Summaries

One of the widely known problems with using call strings [34], is that for programs with deep
call chains, the number of call strings can be tremendously high. As a result, context-sensitive
analyses tend to be very expensive both in terms of time and memory usage especially when
analysing large programs. A more widely used alternative, which is still context-sensitive, is
the method summary approach [57] which involves calculating for each method, a function that
describes how the method as a whole translates data flow information. Data flow facts don’t
have to be flowed through a target method m but instead are translated in one step using m’s
summary function.

A summary function is computed by first defining, for each individual statement, functions
describing how they each translate data flow information and then composing them into one
large function for the entire method. Essentially, the data flow information during summary
computation are these functions. Therefore, the challenge is to find a representation that affords
fast composition and meet operations.

2.2.2.5 IDE analyses

An important category of data flow analyes are called Interprocedural Distributive Environ-
ment (IDE) analyses. This is a very general class containing analyses such as copy-constant
propagation and linear-constant propagation, object naming analysis, 0-CFA type analysis,
and all IFDS (interprocedural, finite, distributive, subset) problems such as reaching defini-
tions, available expressions, live variables, truly-live variables, possibly uninitialised variables,
flow-sensitive side-effects, some forms of may-alias and must-alias analysis, and interprocedural
slicing [51].

In an IDE problem, data flow facts are environments. That is, they are mappings of the
form D → L where D is a finite set of symbols D and L is a finite height semi-lattice. For
example, in the case of constant-propagation, D would be the set of variables in the program
and L = {⊤,⊥} ∪ Z.

The advantage of formulating an analysis in the IDE framework, is that efficient repre-
sentations have been developed that allow fast composition and meet [52]. In summary, they
represent transfer functions, called transformers, as graphs. This allows composition to be
computed by simply taking the transitive closure.
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Figure 2.6: An example illustrating the general idea behind lock inference.

T1 :
atomic {

x . f = 1 ;
}

T2 :
atomic {

x . f = 2 ;
y . f = 2 ;

}

T3 :
atomic {

y . f = 3 ;
}

apply analysis
−−−−−−−−−→

T1 :
synchronized ( x ) {

x . f = 1 ;
}

T2 :
synchronized ( x ) {

synchronized ( y ) {
x . f = 2 ;
y . f = 2 ;

}
}

T3 :
synchronized ( y ) {

y . f = 3 ;
}

(a) (b)

2.3 Literature review

We now conduct the review by first defining a unified framework consisting of the dimensions
along which existing lock inference work can differ. We then use this framework to compare the
contributions, as shown in Figure 2.1.

2.3.1 Basics of lock inference

The general idea behind lock inference, given a program containing atomic sections, is to stat-
ically infer a set of locks for each atomic section to acquire and release, which ensure that the
result of concurrently executing multiple atomic sections is equivalent to executing them in
some serial order. That is, the locks should ensure serialisability [41] of all atomic sections.

To illustrate this, consider the example program in Figure 2.6(a). It consists of two global
objects x and y, as well as three threads T1, T2 and T3 performing concurrent updates to their
f fields. To avoid interfering with each other, the threads perform their updates inside atomic
sections.

Lock inference begins by performing a compile-time analysis to determine what shared
accesses are being performed by each atomic section. It then maps these shared accesses to
locks, trying to balance the requirements of maximal concurrency, a minimal number of locks
and freedom from deadlock. Finally, these locks are inserted into the program in the form
of acquire and release operations. In this example, the analysis infers that T1 accesses x; T2
accesses x and y; and T3 accesses y. When mapping these accesses to locks, it will notice that
T1 and T3 perform disjoint accesses and should consequently be allowed to run in parallel by
not being given the same lock. Furthermore, T2 conflicts with both and therefore should have
a (different) lock in common with each of T1 and T3. The solution in this case, as shown
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Figure 2.7: Iterating through a dynamic data structure.

Node n = l i s t . head ;
while (n != null ) {

n = n . next ;
}

in Figure 2.6(b), is to protect each global object with its own lock and acquire the lock(s)
corresponding to the object(s) accessed by the particular atomic in question. This allows T1

and T3 to execute in parallel but serialises T1 and T2 as well as T2 and T3. This example uses
Java’s synchronized construct, which acquires the unique lock protecting the argument object
and releases it after exiting the block.

2.3.2 Inferring shared accesses

Lock inference proceeds by first inferring what shared accesses are performed by each atomic
section. This allows the analysis to determine potential conflicts, which it can mitigate with
a suitable set of locks. However, this is complicated by the fact that the number of datum
accessed at run-time may not be completely known at compile-time, such as when traversing
dynamic data structures like linked lists. Figure 2.7 shows an example.

Lock inference analyses, as they are performed at compile-time, have to represent such
potentially infinite sets of accesses in a finite manner. How this is done depends on how the
analysis represents data accesses.

2.3.2.1 Data representation

There are two representations inferred by existing lock inference work. One approach is to infer
abstract objects [29, 21]. An abstract object is an allocation site of the form new T. They are
called abstract because many run-time objects may be created by the same allocation site. For
example:

1 Car [ ] ca r s = new Car [N ] ;
2 for ( int i =0; i<N; i++) {
3 car s [ i ] = new Car ( ) ;
4 }

This program fragment creates an array with N elements and initialises each one with a
new Car instance, giving a total of N+1 run-time objects. Furthermore, there are two abstract
objects o1 and o3, representing the allocations at lines 1 and 3 respectively. While there is a
one-to-one mapping between the run-time and compile-time array object cars, we have the
unfortunate result that all elements in the array are mapped to the same abstract object o3.
Consequently, accesses of distinct array elements will be considered by the analysis as accesses
of the same object, resulting in a conflict being detected that doesn’t exist. In general, an
inference algorithm using this technique determines which of these abstract objects are pointed
to by variables and fields inside the atomic section. This is known as a points-to analysis [48].

The second approach is to infer lvalues [41, 6, 8, 5]. An lvalue is a syntactic expression that
refers to an object on the heap. Examples include x.f.g (in Java) and x->f->g (in C/C++).
At run-time, each lvalue can evaluate to any number of objects. For example:
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Table 2.1: Comparison of lock inference approaches (considered in chronological order)

McCloskey [41] Hicks [29] Emmi [8] Zhang [65] Halpert [21] Cunningham [6] Cherem [5]

Language C C C, Java OpenMP Java Java C/C++, C#

Inferring accesses

Data representation Lvals Allocs Lvals ? Allocs Lvals Lvals
Aliasing Yes Yes Yes ? Yes Yes Yes
Assignment No N/A No ? N/A Rewrite Rewrite
Unbounded accesses N/A N/A N/A N/A N/A Regex Limit length
Local/shared Yes* Yes No No Yes No No

Inferring locks

Isolate conflicts No No No Yes Yes No No
Isolate concurrency No No No No Yes No No
Data to locks Manual Auto Auto Auto Auto Auto Auto
Lock minimisation None Coalesce ILP ILP, Heuristics Heuristics None None
Locking granularity Static/Dynamic Static Static/Dynamic Static Static/Dynamic Multigrain Multigrain

Acquiring/releasing locks

Locking policy Strict 2PL Basic 2PL Strict 2PL Basic 2PL Basic 2PL Early unlocking Basic 2PL
Deadlock Static Static Static Static Static Dynamic Dynamic?

Additional features

True nesting No No No No Yes No No
Condition variables Yes No No Yes Yes No No

Evaluation

Large examples Yes No Yes Yes Yes No Yes
Run-time results Yes No No Yes Yes No Yes

22



Figure 2.8: Assignments (a) and aliasing (b) affect which lvalues are inferred.

atomic {
me. account = you . account ;
me . account . balance = 0 ;

}

atomic {
me. account = you . account ;
kh i l an . account . balance = 0 ;

}

(a) (b)

public void m(A a ) {
a . f = 1 ;

}

In this example, method m takes a parameter of type A and modifies its f field. With
abstract objects, we infer all allocations that could be pointed to by a, whereas the lvalues
approach infers the expression a. Note that during the life-time of the program, a may point
to an unbounded number of objects, however, if the (possibly unique) lock used to protect each
such object is somehow reachable from the object; that is, it can be expressed as an extension
of the lvalue, such as a.lock, then we can lock each of these objects individually. This is much
finer-grained than when using abstract objects because there the maximum number of locks is
bounded by the number of such objects known at compile-time.

2.3.2.2 Assignment

Lvalues can be assigned to one or more times in an atomic section. As a result, the object
being referred to at an access may not be the same as where locks are acquired. Consider the
example in Figure 2.8(a). The object being updated in the second line is me.account. However,
me.account is assigned to you.account before the update. Hence, with respect to the start of
the atomic section, the object being updated is actually you.account.

In [6, 5], lvalues are rewritten as they are pushed up the atomic section while [41] forces the
lock aquisition to happen after the assignment. Note that this is not a problem for approaches
that use abstract objects as the points-to analysis takes care of assignments.

2.3.2.3 Aliasing

Two lvalues are aliases if they refer to the same object. This complicates things further because
an assignment to an object’s field accessed through one alias may change the object being
referred to when an access involving the other one occurs. For example, in Figure 2.8(b) me

and khilan are aliases. Consequently, you.account’s balance is being updated in the second
line. Aliases are usually computed using a points-to analysis. However, if this information is
not available, all we can do is be conservative and assume that me, you and khilan could all
alias each other. This is because our lock inference analysis must be correct for all executions.

Autolocker [41] assumes that all non-global lvalues of the same type are aliases, while [6]
treats the receivers of lvalues that have the same final field as possible aliases. For example,
potential aliases in lvalues x.f.g.s.g and q.g are: x.f, x.f.g.s and q. Finally, the approach
in [29] uses coarse locks when aliasing makes it unclear which objects are being accessed. [8]
distinguishes between must- and may-aliases and uses this information to impose constraints
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Figure 2.9: Heap-centric view of iterating through a linked list.

on the locks that protect them: lvalues that always alias each other can use per-instance locks,
while lvalues that may alias each other must be protected by the same global lock.

2.3.2.4 Unbounded accesses

We revisit the linked list traversal example of Figure 2.7. As mentioned above, we cannot infer
at compile-time how many nodes will be accessed, as each iteration of the while loop will access
one node and we don’t know how many times the while loop will iterate. To ensure our analysis
is correct and covers all cases, we can only assume that this number is infinite. This is okay if
we are inferring abstract objects because these are finite, but the lvalues approach generates an
infinite set of lvalues! With respect to the start of the atomic section, the set of objects accessed
would be {n, n.next, n.next.next, ...}.

Consider the linked list in Figure 2.9 to understand why. The diagram shows the node
pointed to by n after each iteration. The key thing to note is that the object n points to after
an iteration is n.next with respect to what it previously pointed to. To lock these accesses
before the while loop, we want all lvalues to be in terms of what n points to there. This is the
aforementioned set. But how do we represent such infinite sets? [5] caps the number of field
lookups in lvalues, while [6] infer nondeterministic finite state automata, which are equivalent
to regular expressions. For example, the set above can be written as n(.next)*.

2.3.2.5 Local/shared distinction

Accesses made inside an atomic section will typically consist of those objects that are not
accessible by other threads (known as thread-local) as well as objects that are (known as thread-
shared). Note that thread-local data do not need to be protected, as there is no contention
for them. Hence, an optimisation employed by three approaches [41, 21, 29] is to ignore such
thread-local accesses. With [41], it is implicit because they assign locks to data that could
potentially be shared, whereas with the other two [21, 29], a static analysis is employed.

We might be able to further reduce the number of inferred accesses by noting that thread-
locality may be too strong a requirement, particularly in a weakly atomic implementation,
which lock inference approaches inherently are. Another approach [31] is to distinguish between
accesses made inside atomics and accesses made outside. This means that if a datum is only
accessd by one atomic, regardless of whether it is thread-local or thread-shared (it may be
accessed concurrently outside the atomic), there is no need to protect it.
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2.3.3 Inferring locks

Having inferred which shared accesses occur within atomic sections, the next step is to infer a
set of locks that ensures they do not conflict with each other. There are a number of ways in
which existing work differs here, including whether they first isolate conflicting atomic sections,
how they map accesses to locks, whether they minimise the number of locks and the chosen
granularity of locks. We now look at these areas.

2.3.3.1 Isolating conflicting atomic sections

[21] identify that existing lock inference work can be categorised as being either top-down or
bottom-up. Top-down approaches [21, 65] first identify which atomic sections may conflict with
each other and then infer a set of locks which ensures they do not execute in parallel, while at the
same time allowing those that do not conflict to do so. Conflicting atomics are detected by find-
ing intersecting read/write sets. [21] improve upon this by also considering which atomic ections
could actually execute concurrently, using a refined May-Happen-in-Parallel analysis [45].

Bottom-up approaches [41, 29, 8, 6, 5] on the other hand, begin from the data accesses and
then derive a set of locks from them. This could have the disadvantage of leading to more locks
being inferred.

2.3.3.2 Mapping accesses to locks

In object-oriented languages, each object is typically protected by its own lock. However, in
general the relationship between locks and data is flexible. Almost all lock inference work [29,
8, 65, 21, 6, 5] performs this mapping automatically, with the exception of [41], which allows
the programmer to annotate what locks protect what data. This has the advantage that it gives
developers more control over performance as they can control the granularity of lock. However,
it adds the overhead of annotations and also relies on the programmer using them correctly.

2.3.3.3 Minimising the number of locks

A number of approaches also employ additional techniques to reduce the number of locks. [8]
and [65] use 0-1 ILP and formulate lock inference as an optimisation problem. [65] also use
heuristics, such as “all conflicting atomic sections must have one lock in common.” [21] also use
heuristics. [29] coalesce locks which are always acquired together.

2.3.3.4 Locking granularity

The number of datum protected by a lock is known as the locking granularity and can have a
significant impact on the amount of concurrency permitted. For example, if the granularity is
coarse, several data items are protected by the same lock; thus preventing concurrent accesses
from proceeding in parallel. On the other hand, a finer granularity associates very few data
items with each lock, thus reducing the chance of contention and increasing the amount of
parallelism possible.

In approaches that use abstract objects [29], a lock is associated with each allocation site.
While this makes the analysis easier (as locks can be determined at compile-time), it does not
scale well because several objects may be constructed using the same allocation statement and
will consequently share the same lock.

Lvalues allow per-instance locks [41, 6, 5, 8], however, aliasing [8] and unbounded accesses [6,
5] often mean that coarser locks are used. A possible solution is to use locks of differing
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Figure 2.10: Locking policies that adhere to two-phase locking (2PL) will guarantee atomicity.
Image adapted from http://rainbow.mimuw.edu.pl/SO/Wyklady-html/Tanenbaum/05-26.jpg.

granularities at the same time, i.e. per-instance locks where possible and coarser locks for
unbounded accesses. This is known as multi-granularity locking and is used by [6, 5].

Finally, top-down approaches to lock inference [65, 21] could be considered coarse, as a small
set of locks protect a large number of accesses. However, their goal is to prevent conflicting
atomic sections from running in parallel. Bottom-up approaches in conjunction with a suitable
locking policy (see below), have the advantage that they can allow conflicting atomic sections
to overlap, thus potentially allowing more concurrency.

2.3.4 Acquiring/releasing locks

Having inferred the locks to be acquired, the last step is to insert them into the program in
the form of acquire and release operations. However, where they are inserted can have a huge
impact on concurrency. Furthermore, the order in which locks are acquired can lead to deadlock.
We look at these two issues here.

2.3.4.1 Locking policy

In this section we refer to a result from database theory [11]. However, it is important to note
that atomicity has a different meaning there. We regard atomicity to mean ‘in a single-step,’
while in databases it means to execute completely or not at all [64]. These definitions are
different. The former says that interleavings from threads do not affect the final result, while
the latter says that execution does not stall half-way. The databases term for the semantics of
atomic sections is serialisability [41]. All remaining uses of ‘atomic’ in this section should be
read as ‘serialisable.’

Database theory says that a sequence of lock() and unlock() operations (called a locking
policy) will guarantee atomicity provided no locks are acquired after the first unlock(). This
implies that in general, our inferred locking policy consist of a phase during which locks are
acquired followed by a phase where locks are released. Such a restriction is called two-phase lock-
ing (2PL). The two phases are called growing and shrinking respectively. Figure 2.10 provides
a graphical illustration.

A basic version, used by four approaches [29, 65, 21, 5], acquires all necessary locks at
the start of the atomic section and releases them at the end. Although simple, it has the
disadvantage of drastically impacting concurrency, especially when objects are required for a
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short period of time and other atomic sections are waiting to access them. Additionally, atomic
sections that require a large number of locks may have to wait a long time before they can start.
In the worst case, they may never get to execute. To enable more parallelism, several variations
of this basic 2PL policy exist [11]:

• Late locking: Delays acquiring a lock until absolutely necessary and releases them all at
the end. For example, each lock is acquired just before the object it protects is accessed
for the first time. The advantage is that atomic sections spend less time waiting to start.
However, late locking is complicated by the ordering on locks for avoiding deadlock. In
the worst case, the resulting policy can be the same as the basic one. This version is used
by two approaches [41, 8].

• Early unlocking: Locks are acquired at the beginning of the atomic section, but are
released when no longer required. This can achieve more parallelism than the basic policy,
however it requires knowing when objects are no longer needed. This can be difficult at
compile-time. It is used by [6].

• Late locking and early unlocking: Locks are acquired only when they are needed, and
once no more locks need to be acquired, they are released as they are no longer required.
This policy can achieve more parallelism than the above two but it is complicated by their
respective issues.

2.3.4.2 Deadlock

If two or more threads try to acquire the same locks but in different orders, it can lead to a
state where they wait for each other called deadlock. Existing lock inference approaches can
be divided into either dealing with deadlock at compile-time, which we shall denote a static
approach, or at run-time, which we shall call a dynamic approach.

Static approaches can either avoid deadlock by ensuring locks are acquired in some globally
defined order. When the number of locks is finite such as when using abstract objects, it is
possible to determine this ordering. This is because all locks to be acquired are known.

However, when inferring lvalues, this isn’t possible without being overly conservative. For
example, [41] imposes an ordering on lvalues at compile-time by treating all lvalues with the
same type as aliases. This has the side-effect that because of other dependencies on the locking
order created by assignments and the fact that they use late locking, their approach can end
up rejecting programs that they cannot guarantee will not deadlock. [8], who extend [41], also
order lvals but use global locks when this is not possible. Other approaches which statically
order are [29] and [65]. [21] uses static (i.e. compile-time) locks when deadlock is possible.

[6] and [5] differ from the aforementioned approaches in that they avoid deadlock dynami-
cally. [6] maintains a waits-for graph. They acquire all locks at the start of the atomic section
and when deadlock occurs, the atomic section which caused it releases all previously acquired
locks and tries to acquire them again, essentially rolling back the locking phase. [5] on the other
hand, ensure that all ancestors in the multi-grain lock hierarchy are already locked.

2.3.5 Additional features

We finally look at the additional features supported by some approaches.

2.3.5.1 Nested atomic sections

Almost all lock inference approaches merge nested atomic sections with their parent, creating
one large atomic section. This can negatively hit concurrency. The exception to this is [21] which
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treats a nested atomic section as distinct from its parent. This means that their locking policy is
not two-phased, however, there is also the additional concern that the outermost atomic section
is no longer atomic. This would be equivalent to open-nesting in the transactional memory
world [43].

2.3.5.2 Condition variables

Condition variables allow a thread to block waiting for some condition to be true, and to be
subsequently woken up when it is. The semantics of this inside atomic sections may be tricky
because waiting for a condition to become true might require releasing other locks to allow
queues to be modified for example. This could break atomicity. Conditional variables are
supported by [41, 21, 65].

2.4 Soot

Soot [60] is a Java optimisation framework for analysing and transforming Java bytecode. It
has four intermediate representations, the most commonly used of which, is Jimple. This
is a typed 3-address code representation. Soot also contains a number of analyses already
implemented within it, such as points-to [38, 39], as well as providing useful features like call-
graph construction.

We will implement our analyses in Soot.
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Chapter 3

Progress

During my Masters [20], I worked with third year PhD student David Cunningham1, on an
efficient representation and analysis for inferring lvalues. The crux of our approach was to use
non-deterministic finite state automata (NFA) to neatly handle unbounded accesses. We also
looked at how to lock such accesses, detecting deadlock at run-time and how to support early
unlocking in our system. This work was also published [6].

Figure 3.1 shows the linked list traversal example from Figure 2.7 together with the NFA
inferred by our analysis. Note that NFAs are equivalent to regular expressions, hence in this
example it is equivalent to n(.next)*.

Figure 3.1: An example of our algorithm inferring object accesses inside a loop.

Node n = l i s t . head ;
while (n != null )

n = n . next ;

An automaton is a finite-state machine, consisting of states, transitions and transition labels.
Formally, it is a 5-tuple M = (Q,

∑
, δ, i, F ), where Q is a finite set of states, i ∈ Q is the start

state, F ⊆ Q is a set of final/accepting states,
∑

is the alphabet of labels allowed on transitions
and δ is a partial mapping δ : Q × (

∑
∪{ǫ}) → P(Q) denoting transitions.

In our representation, transition labels can be either variable names, field names or [] rep-
resenting an array access. For further details about the transfer functions, please see [6, 20].

3.1 Scaling the approach to Java

I began the PhD by implementing our analysis in Soot, extending the transfer functions accord-
ingly to support static accesses and exceptions. However, given that our analysis is context-
sensitive and uses call strings, I quickly ran into scalability problems when analysing a “hello
world” atomic section, as shown in Figure 3.2.

This was due to the thousands of methods statically reachable from PrintStream.println().
I tried using the approach detailed in [34], however, the analysis still didn’t scale. Consequently,

1http://www.doc.ic.ac.uk/~dc04/
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Figure 3.2: A “hello world” atomic section.

atomic {
System . out . p r i n t l n ( ” Hel lo world ” ) ;

}

Figure 3.3: Our transformers.

Statement Transformer

[x = y]n {x
λl.l
−−→ y}

[x = y.f ]n {Λ
λl.(0,n)
−−−−→ y} ∪ {x

λl.(n,l.dest)
−−−−−−−→ .f}

[x.f = y]n {Λ
λl.(0,n)
−−−−→ x} ∪ {.f

λl.l
−−→ .f, .f

λl.(0,l.dest)
−−−−−−−→ y}

due to this experience and the advice given by people I’ve met at conferences, I have switched
to using a summary-based approach instead.

3.2 Summaries

In the Background chapter, we mentioned that IDE data flow analyses have a very efficient
representation already defined for them in the literature [52], hence, we decided to reformulate
our analysis in terms of the IDE framework.

In our original analysis, the data flow facts are automata. Hence, the first step was to
convert them to environments; that is, mappings from some finite set of symbols D to elements
of a finite semi-lattice L. We represent an automaton as a mapping from transition labels to
pairs of the form (q1, q2) where {q1, q2} ⊆ Q. Let StatePairs = Q × Q. Then, we choose
D = LocalV ars ∪ FieldNames ∪ ClassNames ∪ {[]} and L = P(StatePairs).

3.2.1 Transformers

The next and final step is to define the transformers, which describe how an environment is
changed by a program statement. For full details about transformers, please refer to [52]. We

modify the semantics for transformer edges di
λl.l
−−→ dj to mean “make all lattice elements mapped

by di in the incoming environment to become lattice elements mapped by dj in the outgoing
environment, as described by the jump function on the edge.” Furthermore, we assume implicit

identity edges di
λl.l
−−→ di for di that are not transformed. We represent kills as edges of the

form di
λl.l
−−→ ǫ and to preserve kills when taking the transitive closure, we assume an implicit

edge of the form ǫ
λl.l
−−→ ǫ. Finally, generated accesses are represented as Λ

λl.(q0,q1)
−−−−−−→ di, where

{q0, q1} ⊆ Q and to preserve them across transformer composition, we assume the implicit edge

Λ
λl.l
−−→ Λ. Figure 3.3 gives our transformers, assuming the aforementioned modified semantics.

3.3 Next steps

I have implemented this analysis in Soot and am currently experimenting with small programs.
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Chapter 4

Research Plan

The core of the PhD will look at how to improve upon existing lock inference techniques,
enabling more concurrency than current approaches allow. However, I will then consider three
areas which existing work has not yet looked at:

• Formally investigate whether the semantics given by a lock inference implementation
matches the higher-level semantics expected by the programmer using atomic sections.
In particular, we ask the question of whether they adhere to the memory model when
accesses to an object occur both within and outside an atomic section.

• Supporting parallelism, such as the fork-join model, within the atomic section. The mo-
tivation for this would be to take advantage of multi-core hardware.

• A hybrid lock inference/transactional system, which may use dynamic feedback or heuris-
tics to determine where locks or transactions would be more beneficial. Current approaches
typically only execute existing monitors, such as those declared using synchronized,
transactionally or using the associated lock. Many papers have already hinted that this
seems to be a logical next step.

4.1 Time-scale

I intend to allocate my time amongst the above tasks as follows:

• Jul ’09 - Oct ’09: Improve upon existing lock inference techniques.

• Nov ’09 - Feb ’10: Formal semantics of lock inference implementations.

• Mar ’10 - Jun ’10: Parallelism inside atomic sections.

• Jul ’10 - Oct ’10: Hybrid lock inference/transactional memory system.

• Internship: I intend to do a 3-month intership, during which I will work on a topic
related to my thesis. However, at present, I don’t know what this topic will be.

During this time, I may come across additional important areas to look at, which is why I
have not allocated all available time. Furthermore, although I will be writing up as I go along,
I will also require time at the end for completing my thesis.
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4.2 Deliverables

Throughout the PhD, I will build and incrementally update a tool, provisionally called lockguard.
This tool will be used to get results on first small then large pieces of software with improvements
being made to the tool if necessary.
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