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The multi-core revolution has made 
concurrency a hot topic

Programmers are now forced to think about 
it for performance

But shared memory concurrency is hard!

Background
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Where we are:
we use locks

Problems

Not composable

Introduce deadlock

Break modularity

Other problems: priority inversion, 
convoying, starvation...
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Atomic sections
What programmers probably can do is tell 
which parts of their program should not 
involve interferences

Atomic sections [Lomet77]

Declarative concurrency control
Move responsibility for figuring out what 
to do to the compiler/runtime

atomic {
    ... access shared state ...
}
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Atomic sections
Simple semantics (no interference allowed)

Naive implementation: one global lock

But we want to allow parallelism without:

Interference

Deadlock
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Transactional memory
Very hot research area - lots of papers!
[For review of work up until 2006, see Larus06]

Advantages

No problems associated with locks

More concurrency

Disadvantages

Irreversible operations (IO, System calls)

Run-time overhead

Tuesday, 16 June 2009



Lock inference

atomic {
x.f = 10;

}

synchronized(x) {
x.f = 10;

}

Statically infer the locks that are needed to 
protect shared accesses

Insert lock()/unlock() statements for them into 
the program to ensure atomic execution
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Lock inference
Challenges

Maximise concurrency

Minimise locking overhead

Avoid deadlock
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Restriction for atomicity: 
Two-phase locking

atomic {
    ...
    lock(A);
    ...
    lock(B);
    ...
    unlock(B);
    ...
    unlock(A);
    ... 
}

Correct

atomic {
    ...
    lock(A);
    ...
    unlock(A);
    ...
    lock(B);
    ...
    unlock(B);
    ... 
}

Wrong
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Locking granularity
To maximise parallelism, locks should be as 
fine-grained as possible

The granularity of locks depends on the 
compile-time representation of objects

Lvalues (e.g. x.f) allow per-instance locks 
when each object has its own lock (e.g. Java)

During my masters, we developed an analysis 
to infer lvalues and it was published in CC’08 
[Cunningham08]
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A compact compile-time object representation

Represents a possibly infinite set of lvalues

Our analysis flows automata around the CFG 

Finite State Automata

{ n, n.next, n.next.next, ... } =

{ y } =

n
.next

y0 1

0 2
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Scaling to Java:
“Hello world” 

atomic {
    System.out.println(“Hello World”);
}
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Scaling to Java:
“Hello world” 

Call graph:

println

.

.

.
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This work doesn’t scale

We switch to computing summaries

A summary is a function that describes how 
a method as a whole translates dataflow 
information

Summaries are also context-sensitive but can 
scale better

Scaling to Java:
“Hello world” 
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Method summaries

m()

{x}

x.f = 1
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Method summaries

m()

{x}

x.f = 1

f ({x})m

f  is m’s summarym
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Computing summaries
Define, for each statement, transfer functions 
describing how they translate dataflow 
information

Compose them into one large transfer 
function for the entire method by flowing 
them through the CFG using a normal 
dataflow analysis

Summaries can get large: challenge is to find 
a representation of transfer functions that 
allows fast composition and meet operations
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IDE Analyses

Interprocedural Distributive Environment [Sagiv96]

Dataflow facts are functions of type D -> L, 
called environments

Transfer functions are called environment 
transformers

Advantage: efficient graph representation of 
environment transformers exists that allows 
fast composition and meet [Reps95,Sagiv96,Rountev08]
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Reformulate our
lvalue analysis

Step 1: Express automata as environments 
(functions of type D -> L)

We represent automata as functions from 
transition labels to sets of pairs of states (of 
the transitions for those labels)

[x -> { (0,1) },
 y -> { (0,2) }]

x

y

0 1

2
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Environment transformers

Step 2: Define environment transformers 
(i.e. the transfer functions)

They describe how the ‘outgoing’ 
environment is computed from the ‘incoming’ 
environment

x = y

envin
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Environment transformers

Step 2: Define environment transformers 
(i.e. the transfer functions)

They describe how the ‘outgoing’ 
environment is computed from the ‘incoming’ 
environment

x = y

env

env    = t    (env  )[x=y]out

in

in
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x yΛ[]

x = y
[x -> { (0,1) },
 y -> { (0,2) }]

Environment transformers
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x yΛ[]

x = y
[x -> { (0,1) },
 y -> { (0,2) }]

[x -> ∅
 y -> { (0,2), (0,1) }]

Environment transformers
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x yΛ[]

x = y

t    = λe.e[y->e(y)Ue(x)][x->∅]

[x -> { (0,1) },
 y -> { (0,2) }]

[x -> ∅
 y -> { (0,2), (0,1) }]

[x=y]

Environment transformers
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Environment transformers
(as in [Sagiv96])

These transformers can be represented as 
graphs

t    = λe.e[y->e(y)Ue(x)][x->∅][x=y]

x y⊥

x y⊥

λl.∅
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Environment transformers
(as in [Sagiv96])

Graphs are kept sparse by not explicitly 
representing obvious edges

[x -> { (0,1) }
 y -> { (0,2) }]

y = null

[x -> { (0,1) }
 y -> ∅]

x y⊥

x y⊥

λl.∅
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Environment transformers
(as in [Sagiv96])

Transformer composition is simply the 
transitive closure
Implicit edges should not have to be made 
explicit as that would be expensive
But determining whether an implicit edge 
exists is costly in [Sagiv96] for our analysis

x y⊥

x y⊥

λl.∅
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Environment transformers
(Ours)

We represent kills in transformers as:

Our lvalues analysis mostly rewrites lvalues, 
hence we change the meaning of transformer 
edges to pass on but also implicitly kill:

Result: implicit edge very easy to determine. 
This leads to fast transitive closure

x ∅

x y

λe.e[x->∅]

λe.e[y->env(y)Uenv(x)][x->∅]⊥
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Environment transformers
(Ours)

We represent kills in transformers as:

Our lvalues analysis mostly rewrites lvalues, 
hence we change the meaning of transformer 
edges to pass on but also implicitly kill:

Result: implicit edge very easy to determine. 
This leads to fast transitive closure

x ∅

x y

λe.e[x->∅]

λe.e[y->env(y)Uenv(x)][x->∅]⊥

λl.∅
⊥ x

Theirs
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x = y

x y

y = null

⊥ ∅

x y⊥ ∅

Environment transformers
(Ours)
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x = y

x y

y = null

⊥ ∅

x y⊥ ∅

x y⊥ ∅

Environment transformers
(Ours)
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x = y

x y

y = null

⊥ ∅

x y⊥ ∅

x y⊥ ∅

Environment transformers
(Ours)
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Implementation

Implemented in the Soot bytecode analysis 
framework and am experimenting with small 
programs at present

Implementation identifies strongly connected 
components (SCC) and propagates summaries 
up the SCC-DAG 
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Future Work: Area 1

Maximise concurrency between atomic 
sections that only partially conflict

Existing work either:
Serialises whole atomics
[Halpert07, Zhang07, Cherem08, Hicks06]
Serialises upto a conflict [Cunningham08]

Serialises after a conflict [McCloskey06, Emmi07]

Two-phase locking can be too restrictive and 
thus hamper concurrency unnecessarily
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Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3
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Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3
L(listA)

U(listA)

L(listA)

U(listA)

L(listB)

U(listB)

L(listB)

U(listB)

Basic locking:
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Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3

U(listA)

L(listA)

U(listA) L(listB)

U(listB)

L(listB)

U(listB)

Late locking:
L(listA)
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Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3
L(listA)

U(listA)L(listA)

U(listA)

L(listB)

U(listB)

L(listB)

U(listB)

Early unlocking:
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Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3

L(listA)

U(listA)

L(listA)

U(listA)
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Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3

L(listA)

U(listA) L(listB)

U(listB)

L(listB)

U(listB)

L(listA)

U(listA)
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Future Work: Area 1

m()

i++

i++

A1

n()

i++

i++

A2

m and n disjoint
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Future Work: Area 1

m()

i++

i++

A1

n()

i++

i++

A2

m and n disjoint
but serialised!

L(i)

U(i)

L(i)

U(i)
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Future Work: Area 1

i++

i++

m()

A1

i++

i++

n()

A2

one solution:
re-order

L(i)

U(i)

L(i)

U(i)
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Future Work: Area 2
Area 2: concurrent accesses to arrays:
e.g. parallel map function:

for (int i=0; i<numChunks; i++) {
    spawn {
        int start = i*chunkSize;
        int end = start+chunkSize;
        for (int j=start; j<end; j++) {
            atomic {
                a[j] = f(a[j]);
            }
        }
    }
}
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Future Work: Area 3

Area 3: allow the use of multi-threaded code 
within atomic sections

Amdahl’s law, composability

Support a spawn construct inside atomic { }

Could also use to automatically improve the 
performance of atomic sections

Tuesday, 16 June 2009



Future Work: Area 3

m()

i++

i++

A1

n()

i++

i++

A2

m and n disjoint
but serialised!

L(i)

U(i)

L(i)

U(i)
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Future Work: Area 3

spawn m()

i++

i++

A1

i++

i++

A2

m and n not
 serialised!

spawn n()

L(i)

U(i)

L(i)

U(i)
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Future Work: Area 4

Area 4: consider a hybrid implementation 
with transactional memory

Benefit of transactional memory’s high 
concurrency

Reduce run-time overhead and allow 
irreversible operations using locks
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Philosophy of approach
Top down [Zhang07, Halpert07]

Bottom up 
[McCloskey06, Hicks06, Emmi07, Cunningham08, Cherem08]

Compile-time representation of objects:
Abstract objects [Hicks06, Halpert07]

Lvalues
[McCloskey06, Hicks06, Emmi07, Cunningham08, Cherem08]

Granularity of locks:
Fine [McCloskey06, Emmi07, Halpert07]

Coarse [Hicks06, Halpert07, Zhang07]

Related work
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The specific two-phase locking policy: 
Basic [Hicks06, Zhang07, Halpert07, Cherem08] 

Late locking [McCloskey06, Emmi07]

Early unlocking [Cunningham08]

Deadlock avoidance: 
Static [McCloskey06, Hicks06, Emmi07, Zhang07, Halpert07]

Dynamic [Cunningham08, Cherem08]

Related work
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My thesis:

Implement atomic using locks

Maximise concurrency between atomics

Be able to handle a real language

Conclusion
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Questions?

"The most likely way for the world to be 
destroyed, most experts agree, is by accident. 
That's where we come in; we're computer 
professionals. We cause accidents."

Nathaniel Borenstein (co-creator of MIME)

We need better abstractions!
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The problem: 
shared memory

Memory

Reading 
from disk

Updating 
display

Solving 
equation
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Bank account example
B

£10

T2

A
£10

T1 A B
£10

A
£10

Tuesday, 16 June 2009



Method that transfers money between 
accounts, if sufficient funds are available:

Bank account (locks)

void transfer(Acct A, Acct B, int amt) {
    int bal = A.getBalance();
    if (amt <= bal) {
        A.withdraw(amt);
        B.deposit(amt);
    }
}
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Bank account (locks)

Time T1 T2 A B
1

2

3

4

Check A`s 
balance £10 £10

Withdraw £10 
from A £0 £10

Withdraw £10 
from A -£10 £10

Deposit £10
into B -£10 £20

transfer(A, B, 10) || a.withdraw(10)
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Bank account (locks)
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1

2

3

4
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Bank account (locks)

Time T1 T2 A B
1

2

3

4

Check A`s 
balance £10 £10

Withdraw £10 
from A £0 £10

Withdraw £10 
from A -£10 £10

Deposit £10
into B -£10 £20

transfer(A, B, 10) || a.withdraw(10)
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Bank account (locks)
Second attempt:

void transfer(Acct A, Acct B, int amt) {
    synchronized(A) {
        synchronized(B) {
            int bal = A.getBalance();
            if (amt <= bal) {
                A.withdraw(amt);
                B.deposit(amt);
            }
        }
    }
}

Tuesday, 16 June 2009



Bank account (locks)
The new implementation has introduced the 
possibility of deadlock:

transfer(A, B, 10) || transfer(B, A, 20)

Time T1 T2
1
2
3
4
5

lock A
lock B

lock B
waiting lock A
waiting waiting
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Inferring lvalues

x.f = 10

x = yatomic {
    x = y;
    x.f = 10;
}
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Inferring lvalues

x.f = 10

x = yatomic {
    x = y;
    x.f = 10;
}

{}
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Inferring lvalues

x.f = 10

x = y

{ x }

atomic {
    x = y;
    x.f = 10;
}

{}
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Inferring lvalues

x.f = 10

x = y

{ y }

{ x }

atomic {
    x = y;
    x.f = 10;
}

{}
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Inferring lvalues

x.f = 10

x = y

{ y }

{ x }

atomic {
    x = y;
    x.f = 10;
}

synchronized(y) {
    x = y;
    x.f = 10;
}

{}
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How many objects accessed?

Problems with iteration

n != null

n = n.next

1

2

atomic {
while (n != null) {
    n = n.next;
}

}
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How many objects accessed?

Problems with iteration

{ n, n.next, n.next.next, ... }

n != null

n = n.next

1

2

Sets can 
grow

infinitely
 large!

atomic {
while (n != null) {
    n = n.next;
}

}
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