
Improving the performance of
Atomic Sections

Khilan Gudka

Supervised by:
Prof. Susan Eisenbach

Tuesday, 16 June 2009

The multi-core revolution has made
concurrency a hot topic

Programmers are now forced to think about
it for performance

But shared memory concurrency is hard!

Background

Tuesday, 16 June 2009

Where we are:
we use locks

Problems

Not composable

Introduce deadlock

Break modularity

Other problems: priority inversion,
convoying, starvation...

Tuesday, 16 June 2009

Atomic sections
What programmers probably can do is tell
which parts of their program should not
involve interferences

Atomic sections [Lomet77]

Declarative concurrency control
Move responsibility for figuring out what
to do to the compiler/runtime

atomic {
 ... access shared state ...
}

Tuesday, 16 June 2009

Atomic sections
Simple semantics (no interference allowed)

Naive implementation: one global lock

But we want to allow parallelism without:

Interference

Deadlock

Tuesday, 16 June 2009

Transactional memory
Very hot research area - lots of papers!
[For review of work up until 2006, see Larus06]

Advantages

No problems associated with locks

More concurrency

Disadvantages

Irreversible operations (IO, System calls)

Run-time overhead

Tuesday, 16 June 2009

Lock inference

atomic {
x.f = 10;

}

synchronized(x) {
x.f = 10;

}

Statically infer the locks that are needed to
protect shared accesses

Insert lock()/unlock() statements for them into
the program to ensure atomic execution

Tuesday, 16 June 2009

Lock inference
Challenges

Maximise concurrency

Minimise locking overhead

Avoid deadlock

Tuesday, 16 June 2009

Restriction for atomicity:
Two-phase locking

atomic {
 ...
 lock(A);
 ...
 lock(B);
 ...
 unlock(B);
 ...
 unlock(A);
 ...
}

Correct

atomic {
 ...
 lock(A);
 ...
 unlock(A);
 ...
 lock(B);
 ...
 unlock(B);
 ...
}

Wrong
Tuesday, 16 June 2009

Locking granularity
To maximise parallelism, locks should be as
fine-grained as possible

The granularity of locks depends on the
compile-time representation of objects

Lvalues (e.g. x.f) allow per-instance locks
when each object has its own lock (e.g. Java)

During my masters, we developed an analysis
to infer lvalues and it was published in CC’08
[Cunningham08]

Tuesday, 16 June 2009

A compact compile-time object representation

Represents a possibly infinite set of lvalues

Our analysis flows automata around the CFG

Finite State Automata

{ n, n.next, n.next.next, ... } =

{ y } =

n
.next

y0 1

0 2

Tuesday, 16 June 2009

Scaling to Java:
“Hello world”

atomic {
 System.out.println(“Hello World”);
}

Tuesday, 16 June 2009

Scaling to Java:
“Hello world”

Call graph:

println

.

.

.

Tuesday, 16 June 2009

Tuesday, 16 June 2009

This work doesn’t scale

We switch to computing summaries

A summary is a function that describes how
a method as a whole translates dataflow
information

Summaries are also context-sensitive but can
scale better

Scaling to Java:
“Hello world”

Tuesday, 16 June 2009

Method summaries

m()

{x}

x.f = 1

Tuesday, 16 June 2009

Method summaries

m()

{x}

x.f = 1

f ({x})m

f is m’s summarym

Tuesday, 16 June 2009

Computing summaries
Define, for each statement, transfer functions
describing how they translate dataflow
information

Compose them into one large transfer
function for the entire method by flowing
them through the CFG using a normal
dataflow analysis

Summaries can get large: challenge is to find
a representation of transfer functions that
allows fast composition and meet operations

Tuesday, 16 June 2009

IDE Analyses

Interprocedural Distributive Environment [Sagiv96]

Dataflow facts are functions of type D -> L,
called environments

Transfer functions are called environment
transformers

Advantage: efficient graph representation of
environment transformers exists that allows
fast composition and meet [Reps95,Sagiv96,Rountev08]

Tuesday, 16 June 2009

Reformulate our
lvalue analysis

Step 1: Express automata as environments
(functions of type D -> L)

We represent automata as functions from
transition labels to sets of pairs of states (of
the transitions for those labels)

[x -> { (0,1) },
 y -> { (0,2) }]

x

y

0 1

2

Tuesday, 16 June 2009

Environment transformers

Step 2: Define environment transformers
(i.e. the transfer functions)

They describe how the ‘outgoing’
environment is computed from the ‘incoming’
environment

x = y

envin

Tuesday, 16 June 2009

Environment transformers

Step 2: Define environment transformers
(i.e. the transfer functions)

They describe how the ‘outgoing’
environment is computed from the ‘incoming’
environment

x = y

env

env = t (env)[x=y]out

in

in

Tuesday, 16 June 2009

x yΛ[]

x = y
[x -> { (0,1) },
 y -> { (0,2) }]

Environment transformers

Tuesday, 16 June 2009

x yΛ[]

x = y
[x -> { (0,1) },
 y -> { (0,2) }]

[x -> ∅
 y -> { (0,2), (0,1) }]

Environment transformers

Tuesday, 16 June 2009

x yΛ[]

x = y

t = λe.e[y->e(y)Ue(x)][x->∅]

[x -> { (0,1) },
 y -> { (0,2) }]

[x -> ∅
 y -> { (0,2), (0,1) }]

[x=y]

Environment transformers

Tuesday, 16 June 2009

Environment transformers
(as in [Sagiv96])

These transformers can be represented as
graphs

t = λe.e[y->e(y)Ue(x)][x->∅][x=y]

x y⊥

x y⊥

λl.∅

Tuesday, 16 June 2009

Environment transformers
(as in [Sagiv96])

Graphs are kept sparse by not explicitly
representing obvious edges

[x -> { (0,1) }
 y -> { (0,2) }]

y = null

[x -> { (0,1) }
 y -> ∅]

x y⊥

x y⊥

λl.∅

Tuesday, 16 June 2009

Environment transformers
(as in [Sagiv96])

Transformer composition is simply the
transitive closure
Implicit edges should not have to be made
explicit as that would be expensive
But determining whether an implicit edge
exists is costly in [Sagiv96] for our analysis

x y⊥

x y⊥

λl.∅

Tuesday, 16 June 2009

Environment transformers
(Ours)

We represent kills in transformers as:

Our lvalues analysis mostly rewrites lvalues,
hence we change the meaning of transformer
edges to pass on but also implicitly kill:

Result: implicit edge very easy to determine.
This leads to fast transitive closure

x ∅

x y

λe.e[x->∅]

λe.e[y->env(y)Uenv(x)][x->∅]⊥

Tuesday, 16 June 2009

Environment transformers
(Ours)

We represent kills in transformers as:

Our lvalues analysis mostly rewrites lvalues,
hence we change the meaning of transformer
edges to pass on but also implicitly kill:

Result: implicit edge very easy to determine.
This leads to fast transitive closure

x ∅

x y

λe.e[x->∅]

λe.e[y->env(y)Uenv(x)][x->∅]⊥

λl.∅
⊥ x

Theirs

Tuesday, 16 June 2009

x = y

x y

y = null

⊥ ∅

x y⊥ ∅

Environment transformers
(Ours)

Tuesday, 16 June 2009

x = y

x y

y = null

⊥ ∅

x y⊥ ∅

x y⊥ ∅

Environment transformers
(Ours)

Tuesday, 16 June 2009

x = y

x y

y = null

⊥ ∅

x y⊥ ∅

x y⊥ ∅

Environment transformers
(Ours)

Tuesday, 16 June 2009

Implementation

Implemented in the Soot bytecode analysis
framework and am experimenting with small
programs at present

Implementation identifies strongly connected
components (SCC) and propagates summaries
up the SCC-DAG

Tuesday, 16 June 2009

Future Work: Area 1

Maximise concurrency between atomic
sections that only partially conflict

Existing work either:
Serialises whole atomics
[Halpert07, Zhang07, Cherem08, Hicks06]
Serialises upto a conflict [Cunningham08]

Serialises after a conflict [McCloskey06, Emmi07]

Two-phase locking can be too restrictive and
thus hamper concurrency unnecessarily

Tuesday, 16 June 2009

Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3

Tuesday, 16 June 2009

Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3

Tuesday, 16 June 2009

Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3
L(listA)

U(listA)

L(listA)

U(listA)

L(listB)

U(listB)

L(listB)

U(listB)

Basic locking:

Tuesday, 16 June 2009

Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3

U(listA)

L(listA)

U(listA) L(listB)

U(listB)

L(listB)

U(listB)

Late locking:
L(listA)

Tuesday, 16 June 2009

Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3
L(listA)

U(listA)L(listA)

U(listA)

L(listB)

U(listB)

L(listB)

U(listB)

Early unlocking:

Tuesday, 16 June 2009

Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3

L(listA)

U(listA)

L(listA)

U(listA)

Tuesday, 16 June 2009

Future Work: Area 1

listA.add(o) o2 = process(o1)

o1 = listA.get(0)

listB.add(0,o2)

listB.size()

A1

A2

A3

L(listA)

U(listA) L(listB)

U(listB)

L(listB)

U(listB)

L(listA)

U(listA)

Tuesday, 16 June 2009

Future Work: Area 1

m()

i++

i++

A1

n()

i++

i++

A2

m and n disjoint

Tuesday, 16 June 2009

Future Work: Area 1

m()

i++

i++

A1

n()

i++

i++

A2

m and n disjoint
but serialised!

L(i)

U(i)

L(i)

U(i)

Tuesday, 16 June 2009

Future Work: Area 1

i++

i++

m()

A1

i++

i++

n()

A2

one solution:
re-order

L(i)

U(i)

L(i)

U(i)

Tuesday, 16 June 2009

Future Work: Area 2
Area 2: concurrent accesses to arrays:
e.g. parallel map function:

for (int i=0; i<numChunks; i++) {
 spawn {
 int start = i*chunkSize;
 int end = start+chunkSize;
 for (int j=start; j<end; j++) {
 atomic {
 a[j] = f(a[j]);
 }
 }
 }
}

Tuesday, 16 June 2009

Future Work: Area 3

Area 3: allow the use of multi-threaded code
within atomic sections

Amdahl’s law, composability

Support a spawn construct inside atomic { }

Could also use to automatically improve the
performance of atomic sections

Tuesday, 16 June 2009

Future Work: Area 3

m()

i++

i++

A1

n()

i++

i++

A2

m and n disjoint
but serialised!

L(i)

U(i)

L(i)

U(i)

Tuesday, 16 June 2009

Future Work: Area 3

spawn m()

i++

i++

A1

i++

i++

A2

m and n not
 serialised!

spawn n()

L(i)

U(i)

L(i)

U(i)

Tuesday, 16 June 2009

Future Work: Area 4

Area 4: consider a hybrid implementation
with transactional memory

Benefit of transactional memory’s high
concurrency

Reduce run-time overhead and allow
irreversible operations using locks

Tuesday, 16 June 2009

Philosophy of approach
Top down [Zhang07, Halpert07]

Bottom up
[McCloskey06, Hicks06, Emmi07, Cunningham08, Cherem08]

Compile-time representation of objects:
Abstract objects [Hicks06, Halpert07]

Lvalues
[McCloskey06, Hicks06, Emmi07, Cunningham08, Cherem08]

Granularity of locks:
Fine [McCloskey06, Emmi07, Halpert07]

Coarse [Hicks06, Halpert07, Zhang07]

Related work

Tuesday, 16 June 2009

The specific two-phase locking policy:
Basic [Hicks06, Zhang07, Halpert07, Cherem08]

Late locking [McCloskey06, Emmi07]

Early unlocking [Cunningham08]

Deadlock avoidance:
Static [McCloskey06, Hicks06, Emmi07, Zhang07, Halpert07]

Dynamic [Cunningham08, Cherem08]

Related work

Tuesday, 16 June 2009

My thesis:

Implement atomic using locks

Maximise concurrency between atomics

Be able to handle a real language

Conclusion

Tuesday, 16 June 2009

Questions?

"The most likely way for the world to be
destroyed, most experts agree, is by accident.
That's where we come in; we're computer
professionals. We cause accidents."

Nathaniel Borenstein (co-creator of MIME)

We need better abstractions!

Tuesday, 16 June 2009

Tuesday, 16 June 2009

The problem:
shared memory

Memory

Reading
from disk

Updating
display

Solving
equation

Tuesday, 16 June 2009

Bank account example
B

£10

T2

A
£10

T1 A B
£10

A
£10

Tuesday, 16 June 2009

Method that transfers money between
accounts, if sufficient funds are available:

Bank account (locks)

void transfer(Acct A, Acct B, int amt) {
 int bal = A.getBalance();
 if (amt <= bal) {
 A.withdraw(amt);
 B.deposit(amt);
 }
}

Tuesday, 16 June 2009

Bank account (locks)

Time T1 T2 A B
1

2

3

4

Check A`s
balance £10 £10

Withdraw £10
from A £0 £10

Withdraw £10
from A -£10 £10

Deposit £10
into B -£10 £20

transfer(A, B, 10) || a.withdraw(10)

Tuesday, 16 June 2009

Bank account (locks)

Time T1 T2 A B
1

2

3

4

Check A`s
balance £10 £10

Withdraw £10
from A £0 £10

Withdraw £10
from A -£10 £10

Deposit £10
into B -£10 £20

transfer(A, B, 10) || a.withdraw(10)

Tuesday, 16 June 2009

Bank account (locks)

Time T1 T2 A B
1

2

3

4

Check A`s
balance £10 £10

Withdraw £10
from A £0 £10

Withdraw £10
from A -£10 £10

Deposit £10
into B -£10 £20

transfer(A, B, 10) || a.withdraw(10)

Tuesday, 16 June 2009

Bank account (locks)

Time T1 T2 A B
1

2

3

4

Check A`s
balance £10 £10

Withdraw £10
from A £0 £10

Withdraw £10
from A -£10 £10

Deposit £10
into B -£10 £20

transfer(A, B, 10) || a.withdraw(10)

Tuesday, 16 June 2009

Bank account (locks)
Second attempt:

void transfer(Acct A, Acct B, int amt) {
 synchronized(A) {
 synchronized(B) {
 int bal = A.getBalance();
 if (amt <= bal) {
 A.withdraw(amt);
 B.deposit(amt);
 }
 }
 }
}

Tuesday, 16 June 2009

Bank account (locks)
The new implementation has introduced the
possibility of deadlock:

transfer(A, B, 10) || transfer(B, A, 20)

Time T1 T2
1
2
3
4
5

lock A
lock B

lock B
waiting lock A
waiting waiting

Tuesday, 16 June 2009

Inferring lvalues

x.f = 10

x = yatomic {
 x = y;
 x.f = 10;
}

Tuesday, 16 June 2009

Inferring lvalues

x.f = 10

x = yatomic {
 x = y;
 x.f = 10;
}

{}

Tuesday, 16 June 2009

Inferring lvalues

x.f = 10

x = y

{ x }

atomic {
 x = y;
 x.f = 10;
}

{}

Tuesday, 16 June 2009

Inferring lvalues

x.f = 10

x = y

{ y }

{ x }

atomic {
 x = y;
 x.f = 10;
}

{}

Tuesday, 16 June 2009

Inferring lvalues

x.f = 10

x = y

{ y }

{ x }

atomic {
 x = y;
 x.f = 10;
}

synchronized(y) {
 x = y;
 x.f = 10;
}

{}

Tuesday, 16 June 2009

How many objects accessed?

Problems with iteration

n != null

n = n.next

1

2

atomic {
while (n != null) {
 n = n.next;
}

}

Tuesday, 16 June 2009

How many objects accessed?

Problems with iteration

{ n, n.next, n.next.next, ... }

n != null

n = n.next

1

2

Sets can
grow

infinitely
 large!

atomic {
while (n != null) {
 n = n.next;
}

}

Tuesday, 16 June 2009

