Improving the performance of

Atomic Sections
Khilan Gudka

Supervised by:
Prof. Susan Eisenbach

Tuesday, 16 June 2009

Background

® The multi-core revolution has made
concurrency a hot topic

@ Programmers are now forced to think about
it for performance

@ But shared memory concurrency is hard!

Tuesday, 16 June 2009

Where we are:
we use locks

@ Problems
@ Not composable
@ Introduce deadlock
@ Break modularity

@ Other problems: priority inversion,
convoying, starvation...

Tuesday, 16 June 2009

Atomic sections

@ What programmers probably can do is tell
which parts of their program should not
involve interferences

@ Atomic sections [Lomet77]
@ Declarative concurrency control
® Move responsibility for figuring out what
to do to the compiler/runtime

atomic {
. access shared state ...

;

Tuesday, 16 June 2009

Atomic sections

@ Simple semantics (no interference allowed)

@ Naive implementation: one global lock

@ But we want to allow parallelism without:
@ Interference

® Deadlock

Tuesday, 16 June 2009

Transactional memory

@ Very hot research area - lots of papers!
[For review of work up until 2006, see Larus06]

@ Advantages
@ No problems associated with locks
@ More concurrency
@ Disadvantages
@ Irreversible operations (I0, System calls)

® Run-time overhead

Tuesday, 16 June 2009

Lock inference

@ Statically infer the locks that are needed to
protect shared accesses

@ Insert lock()/unlock() statements for them into
the program to ensure atomic execufion

- -

Tuesday, 16 June 2009

Lock inference

@ Challenges
@ Maximise concurrency

@ Minimise locking overhead

@ Avoid deadlock

Tuesday, 16 June 2009

Restriction for atomicity:
Two-phase locking

Correct

Locking granularity

® To maximise parallelism, locks should be as
fine-grained as possible

@ The granularity of locks depends on the
compile-time representation of objects

@ Lvalues (e.g. x.f) allow per-instance locks
when each object has its own lock (e.g. Java)

@ During my masters, we developed an analysis

to infer lvalues and it was published in CC'08
[CunninghamO8]

Tuesday, 16 June 2009

Finite State Automata

@ A compact compile-time object representation
@ Represents a possibly infinite set of lvalues

@ Our analysis flows automata around the CFG

{y}- -Q—©

{ n, n.next, n.next.next, ... } = +Q—D—>@O.next

Tuesday, 16 June 2009

Scaling to Java:
"Hello world”

atomic {
System.out.println(“Hello World”) ;

}

Tuesday, 16 June 2009

Scaling to Java:
"Hello world”

Call graph:

. .
) .
-e
.o
'
'
.
.
'
'
——
'
LR
.
.
e
" .
L LA '
SARRMRIL AR e '
" - .
—— - 2
T ' —r
LU}
LD

Tuesday, 16 June 2009

Scaling to Java:
"Hello world”

@ This work doesnt scale
@ We switch to computing summaries

@ A summary is a function that describes how
a method as a whole translates dataflow
information

@ Summaries are also context-sensitive but can
scale better

Tuesday, 16 June 2009

Method summaries

Method summaries

f(ix})

f_is ms summary

Computing summaries

@ Define, for each statement transfer functions
describing how they translate dataflow
information

@ Compose them into one large transfer
function for the entire method by flowing
them through the CFG using a normal
dataflow analysis

@ Summaries can get large: challenge is to find
a representation of transfer functions that
allows fast composition and meet operations

Tuesday, 16 June 2009

IDE Analyses

@ Interprocedural Distributive Environment [sagivoé]

@ Dataflow facts are functions of type D -> L,
called environments

® Transfer functions are called environment
transformers

@ Advantage: efficient graph representation of
environment transformers exists that allows
fast composition and meet [Reps95,5agivo6,Rountev0s])

Tuesday, 16 June 2009

Reformulate our
lvalue analysis

@ Step 1: Express automata as environments
(functions of type D -> L)

® We represent automata as functions from
transition labels to sets of pairs of states (of
the transitions for those labels)

o i [x -> 1 (0.1) },
Q\@ y ->{(0,2) }]
(2)

Tuesday, 16 June 2009

Environment transformers

@ Step 2: Define environment transformers
(i.e. the transfer functions)

@ They describe how the ‘outgoing’
environment is computed from the ‘incoming’
environment

Tuesday, 16 June 2009

Environment transformers

@ Step 2: Define environment transformers
(i.e. the transfer functions)

@ They describe how the ‘outgoing’
environment is computed from the ‘incoming’
environment

l enVou+ - 'I.[x___y](envin)

Tuesday, 16 June 2009

Environment transformers

y -> {(0,2) }]

<

Environment transformers

[Xx -> @
Y =2 { (012)1 (Oll) }]

y -> {(0,2) }]

<

Environment transformers

[Xx -> @
Y =2 { (012)1 (Oll) }]

[x =7 { (Oll) }I
y . { (012) }]

tixey) = Ae.ely->e(y)Ue(x)][x->2]

Environment transformers
(as in [Sagiv96])

@ These transformers can be represented as
graphs
txeyj= Ae.e[y->e(y)Ue(x)][x->2]

- X
25 X

.

Y

Environment transformers
(as in [Sagiv96])

@ Graphs are kept sparse by not explicitly
representing obvious edges

y s { (0,2) }]

<

Environment transformers
(as in [Sagiv96])

@ Transformer composition is simply the
transitive closure

@ Implicit edges should not have fo be made
explicit as that would be expensive

@ But determining whether an implicit edge
exists is costly in [Sagiv96] for our analysis

1 X Y

Environment transformers
(Ours)

@ We represent Kills in transformers as:
X > &
Ae.e[x->T]

@ Our lvalues analysis mostly rewrites lvalues,
hence we change the meaning of transformer
edges fo pass on but also implicitly Kill:

X > Y
Ae.e[y->env(y)Uenv(x)][x->@]

@ Result: implicit edge very easy to determine.
This leads to fast transitive closure

Tuesday, 16 June 2009

Environment transformers
(Ours)

@ We represent Kills in transformers as:

X >
Ae.e[x->T]

@ Our lvalues analysis mostly rewrites lvalues,
hence we change the meaning of transformer
edges fo pass on but also implicitly Kill:

X > Y
Ae.e[y->env(y)Uenv(x)][x->2]

@ Result: implicit edge very easy to determine.
This leads to fast transitive closure

Tuesday, 16 June 2009

Environment transformers
(Ours)

Environment transformers
(Ours)

Environment transformers
(Ours)

Implementation

@ Implemented in the Soot bytecode analysis
framework and am experimenting with small
programs at present

@ Implementation identifies strongly connected
components (SCC) and propagates summaries
up the SCC-DAG

Tuesday, 16 June 2009

Future Work: Area 1

@ Maximise concurrency between atomic
sections that only partially conflict

@ Existing work either:

@ Serialises whole atomics
[Halpert07, Zhang07, CheremO08, Hicks06]

@ Serialises upto a conflict [cunninghamos]
@ Serialises after a conflict [Mccloskeyos, Emmio7]

@ Two-phase locking can be too restrictive and
thus hamper concurrency unnecessarily

Tuesday, 16 June 2009

Future Work: Area 1

Future Work: Area 1

Al

|

A2

l

ol = listA.get(0) &

listA.add(o)

P L T AP
~ g --‘““

|

= process(ol)| | listB.size()

- =l
Ko EFAEE | Aty o Al ansl g
! > " W AN ’

listB.add(0,02)

|

Tuesday, 16 June 2009

Future Work: Area 1

Basic locking: A2
l L(listB)

ol = listA.get(0) e

l B l l L(listB)

listA.add(o) oprocess(ol) listB.size()
l l U(listB)
listB.add(0,02)

lU(nsz)

Al

Tuesday, 16 June 2009

Future Work: Area 1

Late locking:
Al

|

A2

l

ol = listA.get(0)

listA.add(o)

|

- L. It T .
o6 ™ B4 '1.“.")/;‘ N
| -y SV,
. AW
oc =
-‘. ';.'n.
" L

|

R A A s
- process(ol)

A3

l L(listB)

L(listB)

listB.size()

listB.add(0,02)

lu(lisz)

l U(listB)

Tuesday, 16 June 2009

Future Work: Area 1

Early unlocking: A2
l L(listB)

ol = listA.get(0) e

l B l l L(listB)

listA.add(o) oprocess(ol) listB.size()
l l U(listB)
listB.add(0,02)

lu(lisz)

Al

Tuesday, 16 June 2009

Future Work: Area 1

Al

|

A2

l

ol = listA.get(0)

listA.add(o)

|

|

o2 = prosassl,

A3

|

|

listB.size()

listB.add(0,02)

|

|

Tuesday, 16 June 2009

Future Work: Area 1

Al

|

A2

l

ol = listA.get(0)

listA.add(o)

|

- L. It T .
o6 ™ B4 '1.“.")/;‘ N
| -y SV,
. AW
oc =
-‘. ';.'n.
" L

|

R A A s
- process(ol)

A3

l L(listB)

L(listB)

listB.size()

listB.add(0,02)

lu(lis’rB)

l U(listB)

Tuesday, 16 June 2009

Future Work: Area 1

Al A2

i m and n disjoint i

Future Work: Area 1

Al A2
l l
1++ 1++

1++ |++

l m and n disjoint l
but serialised!

Tuesday, 16 June 2009

Future Work: Area 1

Al A2

l

1++

|

one solution:
re-order

Tuesday, 16 June 2009

Future Work: Area 2

@ Area 2: concurrent accesses to arrays:
e.g. parallel map function:

for (int 1=0; i<numChunks; 1i1++) {
spawn {

int start = 1*chunkSize;

int end = start+chunkSize;

for (int j=start; j<end; j++) {
atomic {

alj] = f(aljl);

}

}

Tuesday, 16 June 2009

Future Work: Area 3

@ Area 3: allow the use of multi-threaded code
within atomic sections

@ Amdahls law, composability
@ Support a spawn construct inside atomic { }

® Could also use to automatically improve the
performance of atomic sections

Tuesday, 16 June 2009

Future Work: Area 3

Al A2
l l
1++ 1++

1++ |++

l m and n disjoint l
but serialised!

Tuesday, 16 June 2009

Future Work: Area 3

Al A2
l l
1++ 1++

1++ |++

l m and n not l
serialised!

Future Work: Area 4

@ Area 4: consider a hybrid implementation
with ftransactional memory

@ Benefit of transactional memorys high
concurrency

@ Reduce run-time overhead and allow
irreversible operations using locks

Tuesday, 16 June 2009

Related work

@ Philosophy of approach
Top down [zhang07, Halpert07]

Bottom up
[McCloskey06, HicksO6, EmmiO7, Cunningham08, CheremO8]

@ Compile-time representation of objects:
Abstract objects [Hicks06, Halpert07]

Lvalues
[McCloskey06, HicksO6, EmmiO7, CunninghamO8, CheremO8]

@ Granularity of locks:
Fine [McCloskey06, EmmiO7, Halpert07]
Coarse [Hicks06, Halpert07, Zhang07]

Tuesday, 16 June 2009

Related work

@ The specific two-phase locking policy:
BasiC [Hicks06, Zhang07, Halpert07, Cherem08]
Late locking [MccCloskey06, Emmi07]

Early unlocking [cunninghamos]

® Deadlock avoidance:
Static [McCloskey06, Hicks06, EmmiO7, Zhang07, Halpert07]
Dynamic [Cunningham08, Cherem08]

Tuesday, 16 June 2009

Conclusion

@ My thesis:
@ Implement atomic using locks
@ Maximise concurrency between atomics

@ Be able to handle a real language

Tuesday, 16 June 2009

Questions?

"The most likely way for the world to be
destroyed, most experts agree, is by accident.
That's where we come in; we're computer
professionals. We cause accidents.”

Nathaniel Borenstein (co-creator of MIME)

We need better abstractions!

Tuesday, 16 June 2009

Tuesday, 16 June 2009

The problem:
shared memory

Memory
7S 1
£ NG - e,)
Reading Updating Solving
from disk display equation

-

J

o

J

_

J

Bank account example

£10 £10

Bank account (locks)

@ Method that transfers money between
accounts, if sufficient funds are available:

void transfer (Acct A, Acct B, int amt) {
int bal = A.getBalance();
it (amt <= bal) {
A.withdraw(amt) ;
B.deposit(amt);

Tuesday, 16 June 2009

Bank account (locks)

transfer(A, B, 10) || a.withdraw(10)

R T T L S T
| £ Sk SR R | R A L
) - gl T " S N Y s
: EI Sl R 4 v R = e fuica” R
2 ' ro) ; - gt in? F X Lo
| 4 L . (e Ly - P |
- . v oLl ‘ j-," i 2 s ¥
, "5 | il St
5 D ™
” 2 Check A’ . ey
X v A L 5
- . § o e C S -J"'T-i'-"_
. st
3 ‘ N A i §ei &b /-“
[T Rt R et el g
g aiance 2 % e (R Y
. it o S - | o R

Tuesday, 16 June 2009

Bank account (locks)

transfer(A, B, 10) || a.withdraw(10)
Time Tl

7 el e o
s | R s
\ [12 .'
CheCk A S T - 2 11.. .1“
7'7:'; o [Y
s |
i i

1
Withdraw £10 [

from A

Tuesday, 16 June 2009

Bank account (locks)

transfer(A, B, 10) || a.withdraw(10)

Time Tl T2

- Check A's
1
U

balance

Withdraw £10
from A

c
3 Withdraw £10
from A

Tuesday, 16 June 2009

Bank account (locks)

transfer(A, B, 10) || a.withdraw(10)

Tl T2

Check A's
balance

Withdraw £10
from A

Withdraw £10
from A

Deposit £10
info B

Tuesday, 16 June 2009

Bank account (locks)
Second attempt:

void transfer(Acct A, Acct B, int amt) {
synchronized(A) {
synchronized(B) {
int bal = A.getBalance();
if (amt <= bal) {
A.withdraw(amt) ;
B.deposit(amt) ;

Tuesday, 16 June 2009

Bank account (locks)

@ The new implementation has introduced the
possibility of deadlock:

@ transfer(A, B, 10) || transfer(B, A, 20)

Time T1 W T

2 lock B
lock B
lock A

3

Tuesday, 16 June 2009

Inferring lvalues

Inferring lvalues

Inferring lvalues

Inferring lvalues

iyt

atomic { X By

Inferring lvalues

iyt

atomic { i / synchronized(y) ({
X = | X = Y;
x.f = 10; af = 10,

Tuesday, 16 June 2009

Problems with iteration

@ How many objects accessed?

atomic {
while (n !'= null) {
n = n.next;

2
¢

Tuesday, 16 June 2009

Problems with iteration

@ How many objects accessed?

{ n, n.next, n.next.next, ... }

atomic {
while (n !'= null) { Sets can

n = n.next,; grow

S
J n = n.next infinitely
} large!

Tuesday, 16 June 2009

