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Background

® The multi-core revolution has made
concurrency a hot topic

@ Programmers are now forced to think about
it for performance

@ But shared memory concurrency is hard!
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Where we are:
we use locks

@ Problems
@ Not composable
@ Introduce deadlock
@ Break modularity

@ Other problems: priority inversion,
convoying, starvation...
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Atomic sections

@ What programmers probably can do is tell
which parts of their program should not
involve interferences

@ Atomic sections [Lomet77]
@ Declarative concurrency control
® Move responsibility for figuring out what
to do to the compiler/runtime

atomic {
. access shared state ...

;
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Atomic sections

@ Simple semantics (no interference allowed)

@ Naive implementation: one global lock

@ But we want to allow parallelism without:
@ Interference

® Deadlock
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Transactional memory

@ Very hot research area - lots of papers!
[For review of work up until 2006, see Larus06]

@ Advantages
@ No problems associated with locks
@ More concurrency
@ Disadvantages
@ Irreversible operations (I0, System calls)

® Run-time overhead
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Lock inference

@ Statically infer the locks that are needed to
protect shared accesses

@ Insert lock()/unlock() statements for them into
the program to ensure atomic execufion

- -
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Lock inference

@ Challenges
@ Maximise concurrency

@ Minimise locking overhead

@ Avoid deadlock
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Restriction for atomicity:
Two-phase locking

Correct




Locking granularity

® To maximise parallelism, locks should be as
fine-grained as possible

@ The granularity of locks depends on the
compile-time representation of objects

@ Lvalues (e.g. x.f) allow per-instance locks
when each object has its own lock (e.g. Java)

@ During my masters, we developed an analysis

to infer lvalues and it was published in CC'08
[CunninghamO8]
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Finite State Automata

@ A compact compile-time object representation
@ Represents a possibly infinite set of lvalues

@ Our analysis flows automata around the CFG

{y}- -Q—©

{ n, n.next, n.next.next, ... } = +Q—D—>@O.next
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Scaling to Java:
"Hello world”

atomic {
System.out.println(“Hello World”) ;

}
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Scaling to Java:
"Hello world”

Call graph:
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Scaling to Java:
"Hello world”

@ This work doesnt scale
@ We switch to computing summaries

@ A summary is a function that describes how
a method as a whole translates dataflow
information

@ Summaries are also context-sensitive but can
scale better
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Method summaries




Method summaries

f(ix})

f_is ms summary




Computing summaries

@ Define, for each statement transfer functions
describing how they translate dataflow
information

@ Compose them into one large transfer
function for the entire method by flowing
them through the CFG using a normal
dataflow analysis

@ Summaries can get large: challenge is to find
a representation of transfer functions that
allows fast composition and meet operations
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IDE Analyses

@ Interprocedural Distributive Environment [sagivoé]

@ Dataflow facts are functions of type D -> L,
called environments

® Transfer functions are called environment
transformers

@ Advantage: efficient graph representation of
environment transformers exists that allows
fast composition and meet [Reps95,5agivo6,Rountev0s])
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Reformulate our
lvalue analysis

@ Step 1: Express automata as environments
(functions of type D -> L)

® We represent automata as functions from
transition labels to sets of pairs of states (of
the transitions for those labels)

o i [x -> 1 (0.1) },
Q\@ y ->{(0,2) }]
(2)
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Environment transformers

@ Step 2: Define environment transformers
(i.e. the transfer functions)

@ They describe how the ‘outgoing’
environment is computed from the ‘incoming’
environment
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Environment transformers

@ Step 2: Define environment transformers
(i.e. the transfer functions)

@ They describe how the ‘outgoing’
environment is computed from the ‘incoming’
environment

l enVou+ - 'I.[x___y](envin)
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Environment transformers

y -> {(0,2) }]

<




Environment transformers

[Xx -> @
Y =2 { (012)1 (Oll) }]

y -> {(0,2) }]

<




Environment transformers

[Xx -> @
Y =2 { (012)1 (Oll) }]

[x =7 { (Oll) }I
y . { (012) }]

tixey) = Ae.ely->e(y)Ue(x)][x->2]




Environment transformers
(as in [Sagiv96])

@ These transformers can be represented as
graphs
txeyj= Ae.e[y->e(y)Ue(x)][x->2]

- X
25 X
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Environment transformers
(as in [Sagiv96])

@ Graphs are kept sparse by not explicitly
representing obvious edges

y s { (0,2) }]

<




Environment transformers
(as in [Sagiv96])

@ Transformer composition is simply the
transitive closure

@ Implicit edges should not have fo be made
explicit as that would be expensive

@ But determining whether an implicit edge
exists is costly in [Sagiv96] for our analysis

1 X Y



Environment transformers
(Ours)

@ We represent Kills in transformers as:
X > &
Ae.e[x->T]

@ Our lvalues analysis mostly rewrites lvalues,
hence we change the meaning of transformer
edges fo pass on but also implicitly Kill:

X > Y
Ae.e[y->env(y)Uenv(x)][x->@]

@ Result: implicit edge very easy to determine.
This leads to fast transitive closure
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Environment transformers
(Ours)




Environment transformers
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Environment transformers
(Ours)




Implementation

@ Implemented in the Soot bytecode analysis
framework and am experimenting with small
programs at present

@ Implementation identifies strongly connected
components (SCC) and propagates summaries
up the SCC-DAG
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Future Work: Area 1

@ Maximise concurrency between atomic
sections that only partially conflict

@ Existing work either:

@ Serialises whole atomics
[Halpert07, Zhang07, CheremO08, Hicks06]

@ Serialises upto a conflict [cunninghamos]
@ Serialises after a conflict [Mccloskeyos, Emmio7]

@ Two-phase locking can be too restrictive and
thus hamper concurrency unnecessarily
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Future Work: Area 1
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Future Work: Area 1

Basic locking: A2
l L(listB)
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l B l l L(listB)
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Future Work: Area 1

Late locking:
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Future Work: Area 1

Early unlocking: A2
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Future Work: Area 1
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Future Work: Area 1
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Future Work: Area 1

Al A2

i m and n disjoint i




Future Work: Area 1

Al A2
l l
1++ 1++

1++ |++

l m and n disjoint l
but serialised!
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Future Work: Area 1

Al A2

l

1++

|

one solution:
re-order
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Future Work: Area 2

@ Area 2: concurrent accesses to arrays:
e.g. parallel map function:

for (int 1=0; i<numChunks; 1i1++) {
spawn {

int start = 1*chunkSize;

int end = start+chunkSize;

for (int j=start; j<end; j++) {
atomic {

alj] = f(aljl);

}

}
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Future Work: Area 3

@ Area 3: allow the use of multi-threaded code
within atomic sections

@ Amdahls law, composability
@ Support a spawn construct inside atomic { }

® Could also use to automatically improve the
performance of atomic sections
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Future Work: Area 3

Al A2
l l
1++ 1++

1++ |++

l m and n disjoint l
but serialised!
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Future Work: Area 3

Al A2
l l
1++ 1++

1++ |++

l m and n not l
serialised!




Future Work: Area 4

@ Area 4: consider a hybrid implementation
with ftransactional memory

@ Benefit of transactional memorys high
concurrency

@ Reduce run-time overhead and allow
irreversible operations using locks
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Related work

@ Philosophy of approach
Top down [zhang07, Halpert07]

Bottom up
[McCloskey06, HicksO6, EmmiO7, Cunningham08, CheremO8]

@ Compile-time representation of objects:
Abstract objects [Hicks06, Halpert07]

Lvalues
[McCloskey06, HicksO6, EmmiO7, CunninghamO8, CheremO8]

@ Granularity of locks:
Fine [McCloskey06, EmmiO7, Halpert07]
Coarse [Hicks06, Halpert07, Zhang07]
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Related work

@ The specific two-phase locking policy:
BasiC [Hicks06, Zhang07, Halpert07, Cherem08]
Late locking [MccCloskey06, Emmi07]

Early unlocking [cunninghamos]

® Deadlock avoidance:
Static [McCloskey06, Hicks06, EmmiO7, Zhang07, Halpert07]
Dynamic [Cunningham08, Cherem08]
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Conclusion

@ My thesis:
@ Implement atomic using locks
@ Maximise concurrency between atomics

@ Be able to handle a real language
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Questions?

"The most likely way for the world to be
destroyed, most experts agree, is by accident.
That's where we come in; we're computer
professionals. We cause accidents.”

Nathaniel Borenstein (co-creator of MIME)

We need better abstractions!
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The problem:
shared memory
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Bank account example

£10 £10




Bank account (locks)

@ Method that transfers money between
accounts, if sufficient funds are available:

void transfer (Acct A, Acct B, int amt) {
int bal = A.getBalance();
it (amt <= bal) {
A.withdraw(amt) ;
B.deposit(amt);
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Bank account (locks)

transfer(A, B, 10) || a.withdraw(10)
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Bank account (locks)

transfer(A, B, 10) || a.withdraw(10)
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Bank account (locks)

transfer(A, B, 10) || a.withdraw(10)
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Bank account (locks)

transfer(A, B, 10) || a.withdraw(10)

Tl T2

Check A's
balance

Withdraw £10
from A

Withdraw £10
from A

Deposit £10
info B
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Bank account (locks)
Second attempt:

void transfer(Acct A, Acct B, int amt) {
synchronized(A) {
synchronized(B) {
int bal = A.getBalance();
if (amt <= bal) {
A.withdraw(amt) ;
B.deposit(amt) ;
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Bank account (locks)

@ The new implementation has introduced the
possibility of deadlock:

@ transfer(A, B, 10) || transfer(B, A, 20)

Time T1 W T

2 lock B
lock B
lock A

3
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Inferring lvalues




Inferring lvalues




Inferring lvalues




Inferring lvalues

iyt

atomic { X By




Inferring lvalues

iyt

atomic { i / synchronized(y) ({
X = | X = Y;
x.f = 10; af = 10,

Tuesday, 16 June 2009



Problems with iteration

@ How many objects accessed?

atomic {
while (n !'= null) {
n = n.next;

2
¢
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Problems with iteration

@ How many objects accessed?

{ n, n.next, n.next.next, ... }

atomic {
while (n !'= null) { Sets can

n = n.next,; grow

S
J n = n.next infinitely
} large!
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