Atomicity for Concurrent Programs
Outsourcing Report

By Khilan Gudka <kg103@doc.ic.ac.uk>
Supervisor: Susan Eisenbach

June 23, 2007

Contents

1

Introduction 5
1.1 The subtleties of concurrent programming 5
1.2 Preventing race conditions 7
1.2.1 The complexities of using locks 8

1.3 The quest for better abstractions 10
1.4 Race-freedom as a non-interference property 11
1.5 Enter the world of atomicity 11
1.5.1 Verifying atomicity 11
1.5.1.1 TypeSystems 13

1.5.1.2 Theorem Proving and Model Checking 13

1.5.1.3 Dynamic Analysis 13

1.6 Atomicity: an abstraction? 14
1.7 Atomicsections 15
1.7.1 The garbage collection analogy 15
1.7.2 A similar approach for concurrencyo 16
1.7.3 Popularity 16
1.7.4 Implementing their semantics 18

1.8 Report structure 19
Background 20
2.1 Terminology e 20
2.1.1 Strong vs. weak atomicity 20
2.1.2 Closed nested vs. open nested transactions 21

2.2 Transactional memory 22
2.2.1 Hardware transactional memory (HTM) 23
22.1.1 Conclusion 24

2.2.2 Software transactional memory (STM) 24
2.2.2.1 Word-based vs. Object-based STMs 25

2222 Non-blocking STMs, 25

2.2.2.3 Omitting the non-blocking requirement 30

2224 Conclusion 32

2.3 Lock inferencing 33
2.3.1 Mappingdatatolocks 34
23.1.1 Read/write locks 35

2.3.1.2 Multi-granularity locking o 37

2.3.2 Acquiring/releasing locks 37
2.3.2.1 Which locks to acquire 38

2.3.2.2 Acquisition order 40

2.3.3 Minimising the number of locks L 43

2.3.3.1 Thread shared vs. thread local
2.3.3.2 Conflating locks
2333 Constantpaths
2.3.3.4 Inside atomic sections vs. outside atomic sections
2.3.4 Starvation
2.3.5 Nested atomic sections,
2.3.6 Source code availability
2.3.7 Conclusion
24 Hybrids
2.4.1 Conclusion
3 Specification
3.1 Language
3.2 Analysis
3.3 Runtime
34 Testing
3.4.1 Additional testso
3.4.1.1 Language behaviour
3.4.1.2 Runtime behaviour
3.5 Documentation
4 Evaluation
4.1 \Verifying correctness L
4.2 Language features
4.3 Performance
43.1 Benchmarks
4.3.1.1 Metrics
Bibliography
A Singlestep toy language grammar
A.1 Declarations L
A2 Statements. L
A3 Expressions.
Ad Tokens

58
58
58
59
59
60

Chapter 1

Introduction

Commodity computing is rapidly shifting from single-core to multi-core architectures, as CPU man-
ufacturers find that traditional ways of increasing processor performance are no longer sustainable.
While parallel processing has been around for a long time, it is only recently that it is becoming
so widespread. Intel predicts that by the end of 2007, 90% of the processors that it ships will be
multi-core [81].

In order to best utilise such parallel processing, software needs to be concurrent. This is a
significant leap given that the vast majority of programs are sequential [87], that is they have a single
thread of control and can only perform one logical activity at any one time. Concurrent programs on
the other hand are structured using several threads of execution, enabling multiple activities to be
performed simultaneously. For example, a web server can accept and process multiple client requests
at the same time.

Previously with single-core systems, concurrent programs did not provide many performance
advantages as true parallelism was not possible. Hence, the main reason for writing software in this
way was for convenience, better throughput and increased responsiveness. However, now the tables
are turned. Concurrent programming is the way that programmers will get increases in performance
from their software, given that significant increases in clock speeds are no longer likely [87, 89].

Automatic parallelisation of sequential programs offers one possible alternative that would en-
able existing software to take advantage without modification [8, 15]. However, many researchers
agree that these automatic techniques have been pushed to their limits and can exploit only modest
parallelism. Instead, programs themselves should be restructured to become logically more concur-
rent [62].

Hence, the industry-wide shift towards parallel architectures has and will continue over the next
few years to spark a revolution in concurrent programming, making it a pervasive aspect of software
engineering [88].

1.1 The subtleties of concurrent programming

Concurrent programming goes all the way back to the late 1950s, when time sharing systems were
introduced to make better use of expensive computing resources. This involved multiplexing a single
CPU between different users enabling them to work on the same machine at the same time doing
different things. Up until the 1990s, it remained mainly of concern to operating systems program-
mers whom had to ensure that their operating systems made optimal use of available hardware

Figure 1.1: Concurrent programs consist of multiple threads of execution, each of which has its
own stack and CPU state (stored in the Thread Control Block). They reside within an oper-
ating system process and communicate with each other through shared memory. (Image source:
http://www.cs.cf.ac.uk/Dave/C/thread_stack.gif).

Single-Threaded Multithreaded
Process Maodel Process Model
_lhread Thread — Thread
: Thread : : Thread : : Thread :
Process User i| Control : 1| Control : 1| Control :
Control Stack Il Block |; | Biock |, 1| Biock |
Black : : : : : :
I 4 Loy !
Kermel Process | || User : Il User : Il User :
User ErTIe Control | || Stack : I| Stack : 1| Stack :
Address Stack I i i :
B]U('k | | | | [|
Space ! i A |
I = L 4
I | |
User : Kernel (1 : Kernel | : Kernel |
Address | || Stack : Il Stack ; Il Stack :
Space : : : : : :
______ T e

resources and allowed the user to multi-task. However, over the last decade or so it has been made
more and more accessible to common programmers with modern programming languages such as
Java [35] providing explicit language support for threads, and older languages adding support through
libraries [75].

However, even though there is such widespread support for concurrency, programmers are still
very reluctant to write concurrent code. While concurrency has not provided much performance
benefit, the main reason why programmers tend to avoid it is because concurrent programming is
inherently difficult and error-prone [76].

Concurrent programs consist of multiple threads of execution that reside within an operating
system process. Each thread has its own stack and CPU state, enabling them to be independently
scheduled. Moreover, in order to facilitate communication (threads are designed to work together),
they share some of the process’s address space (Figure 1.1). However, this “common” memory is
the root cause of all problems associated with concurrent programming. In particular, if care is not
taken to ensure that such shared access to memory is controlled, it can lead to interference (more
commonly referred to as a race condition [74]). This occurs when two or more threads access the
same memory location and at least one of the accesses is a write.

Figure 1.2 shows an example race condition whereby two threads T1 and T2 proceed to increment
a Counter object ¢ concurrently by invoking its increment method. This method reads the value
of the counter into a register, adds 1 to it and then writes the updated value back to memory.
Figure 1.2(c) shows an example interleaving. Thread T1 reads the current value of the counter (0)
into a register but is then pre-empted by the scheduler which then runs thread T2. T2 reads the value
(0) into a register, increments it and writes the new value (1) back to memory. T1 still thinks that
the counter is 0 and hence when it is eventually run again, it will also write the value 1, overwriting
the update made by T2. This error is caused because both threads are allowed uncontrolled access
to shared memory, i.e. there is no synchronisation. As a result, a race condition occurs and an

Figure 1.2: An example race condition that occurs when two threads T1 and T2 proceed to increment
a counter at the same time.

class Counter {

int counter = O0;
void increment() { increment() execution steps:
counter = counter 4+ 1;
} read counter into register;
} add 1 to register;

write register to counter;

Counter ¢ = new Counter ();
Thread T1: c.increment();
Thread T2: c.increment();

(a) (b)

Thread T1 Thread T2

counter is 0

read counter into register

counter is 0

read counter into register
add 1 to register
write register to counter
add 1 to register
write register to counter

10

O© 00 ~N O 01k~ W -

()

update is lost.

Such interference can be extremely difficult to detect and debug because their occurrence depends
on the way the operations of different threads are interleaved, which is non-deterministic and can
potentially have an infinite number of possible variations. As a result, they can remain unexposed
during testing, only to appear after the product has been rolled out into production where it can
potentially lead to disastrous consequences [64, 58, 77].

1.2 Preventing race conditions

At present, programmers prevent such race conditions by ensuring that conflicting accesses to shared
data are mutually exclusive, typically enforced using locks. Each thread must acquire the lock
associated with a resource before accessing it. If the lock is currently being held by another thread,
it is not allowed to continue until that thread releases it. In this way, threads are prevented from

Figure 1.3: Race free version of the example given in Figure 1.2.

class Counter {
int counter = 0;

synchronized void increment() {
counter = counter + 1;

}
}

Counter ¢ = new Counter ();
Thread T1: c.increment();
Thread T2: c.increment ();

performing conflicting operations at the same time and thus interfering with each other.

Figure 1.3 shows a race-free version of our counter example. The synchronized keyword is
Java syntax that requires the invoking thread to acquire first an exclusive lock on the object before
proceeding. If the lock is currently unavailable, the requesting thread is blocked and placed in a
queue. When the lock is released, it is passed to a waiting thread which is then allowed to proceed.
Going back to our example, now thread T2 will not be allowed to execute increment until T1 has
finished because only then can it acquire the lock on c. Thus, invocations of increment are now
serialised and races are prevented.

1.2.1 The complexities of using locks

The mapping from locks to objects and whether or not non-conflicting operations can proceed
in parallel is up to the programmer. This is referred to as the locking granularity and can have
significant repercussions on performance. Some examples include:

1. Single global mutual exclusion lock (that is, a global lock that can be held by only one thread
at a time) to protect all shared accesses of all objects.

2. Mutual exclusion lock for each object (e.g. synchronized in Java) that subsequently prevent
multiple threads from accessing the same object at the same time but which permit concurrent
accesses to different objects.

3. Separate read and write locks for each object that allow non-conflicting accesses on the same
object to proceed in parallel. This makes it possible for several threads to read the value of
the counter concurrently but only one thread is allowed access when updating it.

One of the problems with this technique of concurrency control is that it's imperative—the
programmer has to enforce it. It can therefore be an easy source of errors, especially when locking
policies! are complex (such as (3) above). If under-synchronising occurs, then the possibility of race
conditions still remains, violating safety. Programmers also have to ensure that locks are acquired
in the correct order otherwise deadlock may occur, leading to a progress violation.

!The locking policy is the strategy used for acquiring/releasing locks.

Figure 1.4: An example of deadlock. (a) is an extended version of the Counter class from Figure 1.3
with an equals method to check if the current Counter has the same value as a second Counter object.
Moreover, threads T1 and T2 execute this method on two separate instances, passing the other instance
as the argument. (b) shows an example resulting locking schedule that leads to deadlock. Note that like
race conditions, the occurrence of deadlock also depends on the order in which operations are interleaved.

class Counter {
int counter = 0;

synchronized void increment() { ... }

synchronized boolean equals(Counter c) {
synchronized(c) {

return counter —— c.counter;
} T1 T2
}

} 1 lock cl
2 lock c2

Counter cl = new Counter(); 3 lock cl

Counter c2 = new Counter(); 4 lock c2 waiting
5 waiting waiting

Thread T1: cl.equals(c2);
Thread T2: c2.equals(cl);

() (b)

Figure 1.4 extends our counter example with an equals method that compares two Counter
objects for the same value. Before this method accesses the second counter, it must first acquire a
lock on it to ensure interference does not occur. Thus, it must acquire both a lock on the counter
whose equals method has been invoked and the counter we are comparing with it. However, if
another thread tries to acquire these locks in the opposite order (as shown in Figure 1.4(b)), then
deadlock may result.

Note how the actual occurrence of deadlock in the example depends on the way operations are
interleaved. This is similar to race conditions, however deadlocks are easier to debug because the
affected threads come to a standstill. Another problem illustrated by the example is that modularity
must be broken in order to detect where deadlock may occur. Therefore, methods can no longer be
treated as black boxes and must be checked to ensure that locks are not acquired in a conflicting
order (although a number of tools exist that can statically check for deadlocks by building a lock
graph and then look for cycles [6]).

The possibility of deadlock can be eliminated by making the locking granularity coarser, so that
a single lock is used for all Counter objects. However, this has a negative effect on performance as
non-conflicting operations, such as incrementing different counters, would not be allowed to proceed
in parallel. Hence, hitting the right balance can be difficult. Furthermore, consider if the Counter
class were part of a library. A static analyser might detect that there is a possibility of deadlock, but
how can you prevent it? You would need to ensure that cl.equals(c2) and c2.equals(cl) are
not called concurrently by synchronising on another lock. However, this just adds to the complexity!

Other problems that can occur due to locks include:

e Priority inversion: occurs when a high priority thread Ty;,, is made to wait on a lower priority
thread T;,,. This is of particular concern in real-time systems or systems that use spin-locks
(that busy-wait instead of blocking the thread) because in these, Tp;g, will be run in favour
of Tjow, and thus the lock will never be released. Solutions include raising the priority of T;,,,
to that of T,gp, (priority inheritance protocol) or the highest priority thread in the program
(priority ceiling protocol) [59].

e Convoying: can occur in scenarios where multiple threads with similar behaviour are executing
concurrently (e.g. worker threads in a web server). Each thread will be at a different stage in
its work cycle. They will also be operating on shared data and thus will acquire and release
locks as and when appropriate. Suppose one of the threads, T, currently possesses lock L
and is pre-empted. While it is off the CPU, the other threads will continue to execute and
effectively catch up with T up to the point where they need to acquire lock L to progress.
Given that T is currently holding this lock, they will block. When T releases L, only one of
these waiting threads will be allowed to continue (assuming L is a mutual exclusion lock), thus
the effect of a convoy will be created as each waiting thread will be resumed one at a time
and only after the previous waiting thread has released L [23, 93].

e Livelock: similar to deadlock in that no progress occurs, but where threads are not blocked.
This may occur when spin-locks are used.

Thus, concurrent programming with locks introduces a lot of additional complexity in the software
development process that can be difficult to manage. This is primarily because current techniques
are too low-level and leave the onus on the programmer to enforce safety and liveness properties.
As a result, even experts can end up making mistakes [57].

Lock-free programming [31] is one alternative that allows multiple threads to update shared data
concurrently in a race-free manner without using locks. Typically this is achieved using special atomic
update instructions provided by the CPU, such as Compare-and-Swap (CAS) and Load Linked /Store
Conditional (LL/SC). These update a location in memory atomically provided it has a particular value
(in CAS this is specified as an argument to the instruction, while for LL/SC it is the value that was
read using LL). A flag is set if the update was successful, enabling the program to loop until it
is. The new java.util.concurrent framework [61] introduced in Java 5 SE provides high-level
access to such atomic instructions, making lock-free programming more accessible to programmers.

While lock-free algorithms avoid the complexities associated with locks such as deadlock, priority
inversion and convoying, writing such algorithms in the first place can be even more complicated.
In fact, lock-free implementations of even simple data structures like stacks and queues are worthy
of being published [47, 30]. Thus, such a methodology doesn’t seem like a practical solution in the
short run.

1.3 The quest for better abstractions

Given the problems associated with current abstractions and that programmers face an inevitable
turn towards concurrency, a lot of work is currently being done to find ways of making concurrent
programming a lot more transparent. Some advocate that we need completely new programming
languages that are better geared for concurrency, but given that we don't yet know exactly what
this means, they suggest this shift should be gradual [87].

10

Many have proposed race-free variants of popular languages that perform type checking or type
inference to detect if a program contains races [11, 19, 38], while others abstract concurrency into
the compiler enabling programmers to specify declaratively their concurrency requirements through
compiler directives [90]. Alternative models of concurrent computation have been suggested such as
actors [2] and chords [9] as well as a number of flow languages that enable programmers to specify
their software as a pipeline of operations with parallelism being managed by the runtime [12, 56].

However, these proposals either require programmers to change substantially the way they write
code or they impose significant overheads during development such as the need to provide annota-
tions. This limits their practicality and usefulness in the short-term.

1.4 Race-freedom as a non-interference property

Ensuring that concurrent software does not exhibit erroneous behaviour due to thread interactions
has traditionally been interpreted as meaning that programs must be race-free. However, race-
freedom is not sufficient to ensure the absence of such errors.

Figure 1.5 shows a bank account example to illustrate this. The program consists of two threads
T1 and T2 that concurrently update Account objects al and a2, both of whose balance is initially
£10. T1 is transferring £10 from a2 to al and T2 is making a withdrawal from a2 for the same
amount. T1 executes first and reads the balance of account a2. It asserts that a2 has sufficient
funds for the transfer but is then pre-empted. T2 then proceeds to withdraw £10 from a2 and is run
to completion by the scheduler. Sufficient funds still exist and therefore the withdrawal completes
successfully. The balance for account a2 is now £0. Meanwhile, T1 is resumed but remains unaware
of this change and thus still thinks that the transfer can go ahead. It proceeds to withdraw £10 from
a2 (which has no effect) and then deposits £10 for ‘free’ into account al, creating an inconsistency.

Such incorrect behaviour occurred due to thread T2 being able to modify account a2 while the
transfer was taking place. This was possible because although the invocations of getBalance and
withdraw ensure mutually exclusive access to account a2, their composition does not. As a result,
conflicting operations can be interleaved between them and thus lead to higher-level interferences.
This does not introduce races because all methods in the Account class are synchronized and
therefore acquire the correct locks before performing shared accesses.

1.5 Enter the world of atomicity

In order to assert that such interferences do not occur, we need a stronger non-interference property
that ensures that other threads cannot interleave conflicting operations while a block of code is
executing, that is the atomicity of code blocks. A code block S is said to be atomic if the result of
any concurrent execution involving S is equivalent to an execution without any interleavings. Thus
it appears to other threads to execute in “one step” which incidentally is what programmers mostly
intend when using concurrency control mechanisms such as locks [29]. However, race detection
tools do not allow programmers to assert that such a high-level property actually holds.

Atomicity is a very powerful concept, as it enables us to reason safely about a program’s behaviour
at a higher level of granularity. That is, it abstracts away the interleavings of different threads (even
though in reality, interleaving will still occur), enabling us to think in terms of single-threaded
semantics. Hence, it provides a maximal guarantee of non-interference.

11

Figure 1.5: Bank account example illustrating that race-freedom is not a strong enough non-interference
property. That is, errors caused by thread interactions can still occur even if a program has no races.
(a) is the race free Account class and a description of two threads T1 and T2. (b) shows an example
interleaving that leads to an error.

class Account {
int balance = 0;

public Account(int initial) {
balance = initial;
}

synchronized int getBalance() {
return balance;

}

synchronized int withdraw(int amount) {
if (amount >= balance)
amount = balance;

balance —— amount;
return amount;

}

synchronized void deposit(int amount) {
balance 4+= amount;

}

synchronized void transferFrom(Account from, int amount) {
int fromBalance = from.getBalance();
if (amount <= fromBalance) {
from . withdraw (amount);
deposit (amount);
}
}
}

Account al = new Account(10);
Account a2 = new Account(10);

T1 T2

a2.getBalance()

a2.withdraw(10)
Thread T1: al.transferFrom(a2,10);

. a2.withdraw(10)
Thread T2: a2.withdraw(10);

al.deposit(10)

AW NN R

(a) (b)

12

1.5.1 Verifying atomicity

Over the last few years, a number of techniques have been developed for verifying atomicity properties
of arbitrary blocks of code, including the use of type systems [29, 28, 27], dynamic analysis [26, 91],
theorem proving [33] and model checking [46].

1.56.1.1 Type Systems

Approaches based on type systems are by far the most popular and can be split up into type checking
and type inference. Type checking typically involves requiring the programmer to annotate which
blocks of code are intended to be atomic and then using Lipton's reduction theory [65] to show that
any concurrent execution of such blocks can be serialised (transformed into an equivalent execution
with no interleavings), taking into account the acquisition and release of locks. This is achieved
using the concept of a mover:

e Left mover: An action a is a left mover if whenever a follows any action b of another thread,
the actions a and b can be swapped without changing the resulting state. For example, lock
release operations.

e Right mover: An action a is a right mover if whenever a is followed by any action b of
another thread, they can be swapped without changing the resulting state. For example, lock
acquire operations.

e Both mover: An action that is both a left mover and a right mover. For example, accessing
an object while holding a mutual exclusion lock on it.

The relevance of this is that if it can be shown that a code block S consists of 0 or more right
movers followed by at most one atomic action followed by 0 or more left movers, then it is possible to
transform a concurrent execution involving S into a serial one by repeatedly commuting operations.
Furthermore, given the generality of the definitions above, this would ensure that S is atomic in
any possible interleaving. A program ‘type checks' if all blocks marked atomic can be reduced in
this way. Figure 1.6 shows an example reduction of the increment method from the Counter
class in Figure 1.3 (with synchronisation having been made more explicit and an intermediate step
introduced). E1, E2 and E3 are interleaved expressions of other threads.

Type inference techniques differ in that they instead infer the atomicity of a code block based
on annotations provided by the programmer indicating which locks guard each data item. The
atomicity inferred can be one of a number of different levels such as constant (i.e. pure), atomic
and compound (i.e. not atomic). Type inference techniques can also complement type checking
where the programmer supplies an expected atomicity.

1.5.1.2 Theorem Proving and Model Checking

These approaches are similar to those based on type systems in that they require the programmer to
provide atomicity specifications for methods/blocks of code as well as annotations indicating which
locks protect which objects. However, they differ in how they verify atomicity, namely using theorem
proving and model checking respectively. Furthermore, they are not as popular, due to their inability
to scale to large programs. In particular, they suffer from the problem of state-space explosion and
thus are only suitable for use in cases where the number of states is small, such as for unit testing.

13

Figure 1.6: Verifying atomicity using reduction. (a) is the Counter class from Figure 1.3 with
increment having been slightly modified so synchronisation is more explicit and that there is an in-
termediate step to model better what actions would really happen when this method is executed. Fur-
thermore, each operation is labelled with the type of mover it is. (b) shows the actual process of reducing
an arbitrary interleaving into a serial execution by repeatedly commuting, thus showing that increment
IS atomic.

class Counter {
int counter = 0;

void increment() {
synchronized(this) { // lock acquire (right mover)

int ¢ = counter; // both mover
counter = ¢ + 1; // both mover
} // lock release (left mover)

(@)

Verifying that increment() is atomic using reduction:
(E1, E2 and E3 are interleaved operations of other threads)

counter; E2; counter = c+1; E3; release;

acquire; El; c

El; acquire; c¢ = counter; counter = c+l; release; E2; E3;

(b)

1.5.1.3 Dynamic Analysis

Dynamic analysis verifies atomicity properties at runtime instead of at compile-time. While this has
the disadvantage that only a limited number of execution paths are checked (also known as test
case coverage), it avoids much of the annotation overhead imposed by static analyses and can scale
better when analysing large programs. However, dynamic analysis does incur a runtime overhead,
and given the nature of atomicity as a safety property and the potential ramifications of atomicity
violations, one might argue that verification should really be performed at compile-time.

1.6 Atomicity: an abstraction?
Atomicity provides a maximal non-interference guarantee to the programmer, ensuring that if a

block of code can be verified to have this property, then it can be assumed that any concurrent
execution involving it will be equivalent to a serial execution. However, while this makes reasoning

14

Figure 1.7: An atomic implementation of method transferFrom from the Account class of Figure 1.5.

synchronized void transferFrom(Account from, int amount) {
synchronized(from) {
int fromBalance = from.getBalance();
if (amount <= fromBalance) {
from . withdraw (amount);
deposit (amount);
}
}
}

about program behaviour much simpler, the onus is still on the programmer to enforce it. That is,
writing concurrent software is still inherently complicated. For example, consider the steps required
to make transferFrom atomic: Being a synchronized method, no other thread can access the
current account until execution completes and the lock is released. However, to ensure that no other
thread accesses account from during the transfer, its lock must be acquired and held throughout.
This prevents all but the transferring thread from accessing the two accounts involved and thus the
execution of method transferFrom is now atomic. Figure 1.7 gives the updated version.

However, the improved implementation (and ensuring atomicity in general) has introduced an-
other problem, namely the potential for deadlock. This could occur if transfers between two accounts
are performed in both directions at the same time. In fact, this seems to be the way that atomicity
would be enforced in general, given that one would have to ensure that other threads cannot access
the shared objects throughout. Thus, the problems mentioned previously with regards to locks still
exist and it is still the programmer that has to deal with them.

Furthermore, it may not always be possible to ensure atomicity. Consider if instead we were
invoking a method on an object that was an instance of some API class. Acquiring a lock on
this object may not be sufficient if the method accesses other objects via instance fields, as we
would need to acquire locks on those objects too in case they are accessible from other threads.
However, accessing those fields would break encapsulation and might not even be possible if they
are private. Hence, the only solution would be for the class to provide a Lock () method that locks
all its fields. However, this breaks abstraction and reduces cohesion because now the class has to
provide operations that are not directly related to its purpose.

Hence, although we can now more confidently assert the absence of errors due to thread inter-
actions by verifying that a block of code is atomic, programmers are still responsible for ensuring
it. With current abstractions, this may not even be possible due to language features such as en-
capsulation. In fact, even if it is possible, modularity is broken thus increasing the complexity of
code maintenance, while other problems such as deadlock are also increasingly likely. Thus, we are
desperately in need of better abstractions that alleviate the programmer from needing to deal with
such complexities and which simplify writing concurrent code.

15

1.7 Atomic sections

1.7.1 The garbage collection analogy

Until 10 years ago, most programming languages supported manual memory management whereby
the programmer explicitly takes care of the allocation and deallocation of memory. However, en-
trusting the user with such an important task naturally led to the possibility of several major classes
of bugs appearing in a program. For example, programmers have to ensure that memory is freed
when no longer needed, otherwise it cannot be reused leading to the problem of memory leaks. Ad-
ditionally, pointers need to be kept track of otherwise memory may be freed when it is still needed,
resulting in dangling pointers which can lead to errors that are hard to diagnose. Moreover, trying
to free memory through such pointers can result in heap corruption or even further dangling pointers
if that memory has been reallocated.

To circumvent such problems, programmers need to be aware of which memory locations are
being accessed where and carefully devise an allocate/deallocate protocol. This leads to breaking
modularity as callers and callees must know what data the other may access. In short, it is extremely
difficult [94, 39].

In order to relieve the programmer of such complexities, automatic garbage management [68]
was introduced. This abstracts the deallocation (the programmer still has to allocate explicitly,
although abstractly) of memory into the language implementation, eliminating a class of errors that
had plagued software programmers for several decades.

1.7.2 A similar approach for concurrency

Verifying atomicity involves the programmer annotating those methods/blocks of code that are
intended to be atomic and then using static or dynamic analysers to show that this is in fact the
case. While this provides a maximal non-interference guarantee, it is still the programmer that has
to ensure it. Moreover, ensuring atomicity at the source code level is not always possible.

This has led to a new kind of abstraction that pushes concurrency control and subsequently the
enforcing of atomicity properties into the language implementation. Atomic sections [66] are blocks
of code that execute as if in a single step, with the details of how this is achieved being taken
care of by the programming language. This is a significant improvement over current abstractions as
atomic sections completely relieve the programmer from worrying about concurrency control and thus
eliminate the associated complexities. They enable programmers to think in terms of single-threaded
semantics and thus also remove the need to make classes/libraries thread safe. Furthermore, error
handling is considerably simplified because code within an atomic section is guaranteed to execute
without interference from other threads and thus recovering from errors is like in the sequential
case. They are also composable, that is two or more calls to atomic methods can be made atomic
by wrapping them inside an atomic section. There is no need to worry about which objects will be
accessed as all these details are taken care of by the language implementation. Therefore, they also
promote modularity.

However, what makes them even more appealing is that they don’t require the programmer to
change the way he/she codes. In fact they simplify code making it much more intuitive and easier
to maintain. Furthermore, recall that programmers intent is mostly atomicity when using locks [29],
thus atomic sections enable programmers to more accurately specify their intentions. Figure 1.8
shows an implementation of the Counter class using atomic sections (denoted using the atomic
keyword). Note that there is no longer the potential for deadlock as the invocation of equals is

16

atomic.
1.7.3 Popularity

The idea of atomic sections for programming languages is not new [66] but like automatic garbage
collection, has only recently begun to generate intense interest from the programming community.
In fact, it is one of the hottest topics in computing at the moment, with the likes of Microsoft, Intel,
Sun and numerous academic institutions getting involved. Furthermore, a number of programming
languages have already started to include support for them either as part of the language [16, 3, 13,
14] or through libraries [21, 31, 51, 48] and a growing list of language extensions have also been
proposed in the literature [43, 44, 82].

1.7.4 Implementing their semantics

Atomic sections are quite an abstract notion, giving language implementors a lot of freedom in how
they are implemented. A number of techniques have been proposed over the years including:

e Interrupts: Proposed in Lomet’s seminal paper [66], whereby interrupts are disabled while
a thread executes inside an atomic section. This ensures atomicity by preventing thread
switches but doesn't work when you have multiple processors or if interrupt-driven /O is
being performed (in the atomic section).

e Co-operative scheduling: Involves intelligently scheduling threads such that their interleav-
ings ensure atomicity [85].

e Transactional memory: This is the most popular technique which implements atomic sections
as database style transactions. Memory updates are buffered until the end of the atomic
section and are committed in ‘one step’ if conflicting updates have not been performed by
other threads while it was executing, otherwise the changes are rolled back (i.e. the buffer is
discarded) and the atomic section is re-executed [4, 21, 44, 43, 49, 55, 54, 60, 71, 79, 86].

e Lock inferencing: An interesting approach that automatically infers which locks need to be
acquired to ensure atomicity and inserts the necessary synchronisation in such a way that
deadlock is also avoided [18, 25, 53, 69].

e Object proxying: A very limited technique whereby proxy objects are used to perform lock
acquisitions before object invocations at runtime. While they can ensure that the resulting
concurrent interleavings are serialisable, they impose significant performance overheads, have
very coarse granularity, and require the programmer to specify explicitly which objects are
shared. In addition, object field accesses cannot be protected, while nested sections are
also not supported properly. Implementations of atomic sections that use this technique are
provided as a library and thus programmers have to begin() and end() the atomic section
of code explicitly, even if an exception is thrown [24], Although a source-to-source translator
could automate this process.

e Hybrids: Approaches that combine several of the above techniques. For example, one hybrid
approach uses locks when there is no contention or when an atomic section contains an
irreversible operation, and transactions otherwise [92].

While nobody yet knows what is the best way of implementing atomic sections, transactional
memory seems to be the most popular approach. However, in its purest form, it is not expressive

17

Figure 1.8: An implementation of the Counter class using atomic sections. Atomic sections group
multiple statements together and execute them as if in one atomic step with the details of how this
is achieved being taken care of by the language implementation. They relieve the programmer from
having to worry about thread interactions and concurrency control, enabling him/her to think in terms
of sequential semantics. Furthermore, the composition of atomic methods is made atomic simply by
wrapping them inside an atomic section. Previously, the outcome of the code executed by threads T1
and T2 would depend on the order of thread interleavings, but with atomic sections one can reason about
their behaviour sequentially.

class Counter {
int counter = O0;

atomic void increment() {
counter = counter + 1;

atomic boolean equals(Counter c) {
return counter = c.counter;

Counter cl = new Counter ();
Counter c2 = new Counter ();

Thread T1:
atomic {
cl.increment();
c2.increment ();
cl.equals(c2); // guaranteed to return true + no deadlock

}

Thread T2:
atomic {
cl.increment();
c2.increment ();
c2.equals(cl); // guaranteed to return true + no deadlock

}

18

enough to accomodate the full range of operations that could occur in an atomic section (due to
it being a memory abstraction) and has significant performance overheads in both contended and
uncontended cases.

Lock inferencing is a promising alternative, as it overcomes many of the problems associated
with transactions. However, there are still many subtle issues that need to be overcome for it to
be applicable for a real language. There are partial solutions, but model languages are often too
simple [53], or require annotations from the programmer [69]. Also, in some approaches, the number
of locks is related to the size of the program [53] and thus they do not scale well when programs have
a large number of objects. Furthermore, language features such as arrays, exceptions, subclassing
and polymorphism have yet to be considered while issues such as aliasing also need a lot of work.

This project looks at building upon existing work in lock inferencing by addressing these issues,
details of which will be looked at in the next section. To facilitate experimentation, a multi-threaded
Java-like toy language called singlestep (see Appendix A for its grammar) will be implemented.
While modifying a real language is a possible alternative, lock inferencing is still at a stage where a
lot of conceptual challenges need to be solved.

This concludes the introduction, which has hopefully provided a pleasant taster of the inherent
problems with concurrent programming given current abstractions and how the notion of atomicity
and atomic sections will revolutionise the way we write concurrent code.

1.8 Report structure

The remainder of this report is structured as follows:
e Background: This next chapter takes a look at some of the implementation techniques
mentioned in the previous section, with an emphasis on lock inferencing.
e Specification: A more detailed outline of the goals of the project.

e Evaluation: This chapter looks at how it can be determined that the aims of the project have
been met.

19

Chapter 2

Background

This part of the report looks in more detail at some of the proposed techniques for implementing
atomic sections, as mentioned in the introductory chapter. The aim is to explore their good and
bad points and consider how they might affect the decisions made in this project. The project aims
to build on work done in lock inferencing techniques, therefore more emphasis will be made in this
area.

2.1 Terminology

In this section we look at terminology that is commonly found in the literature and which will be
used throughout the rest of this report.

2.1.1 Strong vs. weak atomicity

Conceptually, atomic sections execute as if in ‘one atomic step,” abstracting away the notion of
interleavings. However, enforcing such a guarantee is not always entirely possible, due to limitations
in hardware, the nature of the implementation technique or the performance degradation that would
result. To make the particular atomicity guarantee offered by an implementation explicit, two terms
have been defined in the literature [10]:

e Strong atomicity: the intuitive meaning of atomic sections as appearing to execute atomically
to all other operations in the program regardless of whether they are in atomic sections or not.

e Weak atomicity: atomicity is restricted to be only with respect to other atomic sections.

For example, it may appear that transactional memory provides strong atomicity by default,
but this is not necessarily the case due to the limitations of atomic read-modify-write instructions
such as Compare-and-Swap (CAS), which software transactional memory relies upon. Recall that
CAS instructions atomically update a memory location provided that it has some particular current
value. However, they suffer from the ‘ABA’ problem whereby a memory update may be masked by
a subsequent one that restores the previous value. Hence, it becomes possible for updates made by
code outside transactions to go un-noticed when a transaction validates for thread interference and
thus atomicity may be violated. Load-Linked/Store-Conditional (LL/SC) atomic update instructions
can detect this ‘hidden update,” however, they only support updating one location at a time. In
particular, it is not possible first to load several values using LL, and then atomically update these
locations later using SC, which would be required for transactional memory.

20

Figure 2.1: A non-blocking implementation of condition variables that require races to ensure progress.
The purpose of this example is to illustrate that wrapping non-atomic code inside atomic{ } to ensure
strong atomicity shouldn’t lead to synchronisation between operations that were designed to race. In
this particular case, the invocations on the condition variable ¢ made by threads T1 and T2 would need
to be wrapped inside an atomic section to ensure that the correct semantics are enforced for thread T3.
However, this has the side effect that T1 and T2 now cannot race on c.counter

class Condition {

boolean condition = false Thread T1:
N ' for(int i=0; i<99; i++) { }
void wait() { c.notify ();
. | L
whlle.(..condltlon) {} Thread T2:
condition = false;)
c.wait();
}
void notify () { Thread-T3:
L atomic {
condition = true; .
c.condition = false;

¥
) }

Condition ¢ = new Condition ();

However, there are some implementations that get around this and are able to offer the intended
behaviour [54]. Therefore, this introduces the problem that we now don't have a clear semantics
for atomic sections. This has a negative effect on code portability because it can be shown that
software written assuming one atomicity may break when presented with the other [10].

Ideally, atomic sections should provide strong atomicity as this is what programmers expect
and is what makes them such a useful abstraction. However, the performance degradation that
results from enforcing this may be too high thus representing a trade off between performance and
ease of programming. Although a number of optimisations have been proposed for reducing this
overhead [54].

It should be noted that providing strong atomicity doesn’t mean that an implementation has
to directly support it. In fact, an implementation may only provide weak atomicity but provide the
guarantee of strong atomicity by using a static analysis to detect shared accesses outside atomic
sections and subsequently wrap them inside atomic{}. However, care has to be taken here as it may
have the side-effect of preventing races that the program relies upon for progress (as is illustrated
in Figure 2.1).

2.1.2 Closed nested vs. open nested transactions

For composability, it is important that atomic sections support nesting. This can trivially be achieved
by considering nested atomic code to be part of the outermost section, however unnecessary con-
tention can occur as a result. Furthermore, it may be necessary to communicate shared state out
of an atomic section, such as for communication between threads. Consequently, a number of dif-
ferent nested semantics have been developed (note that they have been designed in the context of

21

transactional memory) [72]:

e Closed nested: In this approach, each nested transaction executes in its own context, that is,
it performs its own validation for the locations it has accessed. If a nested transaction commits,
that is, no other thread has performed conflicting updates to the locations it has accessed, then
the changes are merged with the parent’s read /write set. This has the advantage that conflicts
are detected earlier and only requires rolling back the transaction at the current nesting level,
although the outermost transaction will still need to validate these accesses in case another
thread has performed a conflicting update before it reached the end. Other threads do not
see the changes until the outermost transaction commits.

e Open nested: Closed nested transactions can still lead to unnecessary contention, given that
updates made by child transactions are not propagated to memory until the end of the out-
ermost transaction. As a result, another type of nesting semantic has been proposed, which
actually makes the updates of a nested transaction visible to other threads. This has the
advantage that it permits shared state to leave atomic sections, such as for communication
between atomic sections, although it has the disadvantage that other threads may see incon-
sistent state if an outer transaction later aborts, requiring mechanisms such as locking [72] to
overcome this. Furthermore, programmers must supply undo operations to undo the effects of
the open nested transaction, given that simply restoring a log will not suffice as other threads
may have performed updates in the mean time.

With regards to lock inferencing, we can only release locks when we are sure they are no longer
required as we cannot roll back. Hence, we will most probably treat all nested atomic sections as
part of the outermost one, although this can be significantly improved by various optimisations that
will be described later (see Section 2.3).

2.2 Transactional memory

Transactional memory provides the abstraction of database-style transactions [22] to software pro-
grams, whereby a transaction in this context is a sequence of memory operations whose execution
is serialisable or equivalently, has the properties of atomicity, consistency and isolation.! That is,
each transaction either executes completely or it doesn't (atomicity), it transforms memory from
one consistent state into another (consistency), and the result of executing it in a multi-threaded
environment is equivalent to if the transaction was executed without any interleavings from other
threads (isolation).

These semantics can be achieved in a number of different ways [21], although the predominant
approach is to execute transactions using optimistic concurrency control. This is a form of non-
blocking synchronisation in which transactions are executed assuming that interference will most
probably not occur; that is, another thread is highly unlikely to write to locations that it accesses.
To ensure atomicity, tentative updates are buffered during execution and committed atomically
at the end. For isolation, this commit is only allowed to proceed if another transaction has not
already performed a conflicting update. This typically requires storing the initial value for each
location accessed and validating that they remain unchanged. If a conflict is detected, the tentative
updates are discarded and the transaction is re-executed. Note that consistency automatically

Transactions in database theory have the additional property of durability, although this is irrelevant here as we
are concerned with interactions between threads that occur through main memory, which is volatile.

22

follows provided that the programmer has ensured that invariants would be maintained even if the
transaction was executed in isolation.

Transactional memory provides a number of potential advantages over traditional blocking prim-
itives such as locks, including:

e No deadlock, priority inversion or convoying: as there are no locks! Although, in theory a
slightly different form of priority inversion could still occur if a high priority thread was rolled
back due to an update made by a low priority thread.

e More concurrency: recall that with locks, the amount of concurrency possible is dependent
on the locking granularity. However, as the number of locks increase, so does the complexity
involved in managing them and thus programmers may end up settling for policies that afford
sub-optimal levels of concurrency. Transactional memories provide the finest possible granu-
larity (at the word level) by default, resulting in optimal parallelism. However, this comes at
the cost of increased overheads, which are unnecessary when the number of concurrent atomic
sections is low.

e Automatic error handling: Memory updates are automatically undone upon rollback, reduc-
ing the need for error handling code [41]. However, this is orthogonal to the topic of atomicity
as atomic sections ensure sequential semantics, which is most important.

¢ No starvation: transactions are not held up waiting for blocked /non-terminating transactions,
as they are allowed to proceed in parallel even if they perform conflicting operations.

However, these advantages rely on being able to roll back in the event of a conflict. This
proves to be a huge limitation for atomic sections as it prevents them from containing irreversible
operations such as system calls and most types of |/O. In addition, allowing conflicting transactions
to proceed in parallel poses a problem for large transactions that may be repeatedly rolled back
(livelock) due to conflicts with many smaller ones. Even in the general case, it leads to wasted
computation when transactions are rolled back, not to mention the overheads incurred during logging
and validation. A number of workarounds have been proposed, such as buffering 1/O [42] and
contention management [84], but no general solution exists yet.

In comparison, lock inferencing does not suffer from these problems because of its pessimistic
nature. Nevertheless, transactional memory still seems to be the most popular technique for im-
plementing atomic sections, with many hardware, software and hybrid implementations having been
proposed. We now look at these in a bit more detail.

2.2.1 Hardware transactional memory (HTM)

The original proposal for transactional memory was a hardware implementation by Herlihy and
Moss [49], whom showed that transactions could be supported using simple additions to the cache
mechanisms of existing processors, and by exploiting existing cache coherence protocols. Their HTM
executed transactions optimistically, keeping separate read and write sets for each transaction in a
small transactional cache. However, it had the limitations that (1) it could only support transactions
upto a fixed size (where size refers to the number of memory locations accessed) and (2) transactions
could not survive scheduler pre-emption.

These limitations were due to there being a bounded amount of available transactional resources.
As a result, many early HTMs were best-effort [60]. A best-effort HTM provides efficient support

23

for as many transactions as available resources allow, but does not guarantee to be able to com-
mit transactions of any size or duration. However, these size and duration restrictions are highly
architecture dependent, thus removing many of the software engineering benefits of transactions, as
programmers have to make assumptions about hardware.

Hence, most recent work in HTMs has concentrated on providing support for larger or even un-
bounded transactions (both in terms of size and duration). Example techniques include, overflowing
transactional state into a table allocated in memory by the operating system [4] and also into a
thread's virtual address space [4, 79, 71]. However, as these data structures have to be traversed in
hardware, the result is a more complicated HTM.

2.2.1.1 Conclusion

HTMs provide the advantage of superior performance in comparison to software implementations.
However, their main limitation is that they require architectural change. Transactions in databases
have been around for a long time and are in widespread use, yet we haven't seen hardware support
being introduced to improve their performance. Thus proposals face the tough task of convincing
chip manufacturers that HTMs are necessary and also relatively simple to add to their existing
designs. This is complicated by the fact that they must support large/unbounded transactions, with
current hardware-only designs being inherently complex.

The other problem is portability. Early proposals imposed architectural-dependent limitations;
however, new hybrid approaches [60] improve things by providing an abstraction layer decoupling the
underlying HTM from the program utilising hardware support when available otherwise transparently
resorting to software transactional memory if not or if the HTM does not have sufficient resources.
Such proposals also simplify the hardware design as HTMs only have to be best-effort.

HTMs are irrelevant for lock inferencing given that it doesn’t use transactions, although a hybrid
implementation could benefit from better performance with hardware support.

2.2.2 Software transactional memory (STM)

To overcome the limitation of requiring specialised hardware, Shavit and Touitou [86] proposed a
software-variant called software transactional memory (STM). Recall that transactional memory was
originally motivated by the need for easier and more efficient ways of implementing non-blocking
synchronisation operations, as it was thought that the key to highly concurrent programming was to
decrease the number and size of critical sections or even eliminate them by implementing programs
as non-blocking [49, 86]. Consequently, Shavit and Touitou's initial STM and many other early
implementations [31, 32, 52, 70] focused on being non-blocking.

However, recently it has been shown that such a guarantee is not necessary and by dropping it,
significantly better performance can be achieved [21]. Hence, many newer STMs have omitted the
non-blocking requirement and instead use a combination of optimistic synchronisation and locks |20,
21, 45] or only locks [55, 83] (although, it should be noted that the latter class of STMs still retain
the need for transactions to be abortable, in order to dynamically avoid deadlock and starvation).
This gives promising evidence that using locks for implementing atomic sections is definitely a step
in the right direction.

STM is a very active area of research with a lot of progress having been made over the last
few years. Other developments include object-based STMs [52, 5, 45], better support for nested
transactions [73], customisable contention management [40, 52, 84], conflict-driven notification [44,
13] and improved support for 1/O and exceptions [42, 41].

24

However even though there have been many advancements, the main focus has been on improving
performance [45]. Hence, a lot more work still needs to be done to address issues hindering their
practicality as an implementation mechanism for atomic sections. In this section, we look in a bit
more detail at how STM research has evolved since 1995 and its implications as an implementation
technique for atomic sections.

2.2.2.1 Word-based vs. Object-based STMs

Just as locks can protect data at the level of words or objects, STM implementations also differ
in the granularity at which they detect contention. In word-based STMs [86, 43, 44], the unit of
concurrency is an individual memory word. That is, contention is considered to occur when threads
access the same location in memory. Object-based STMs [70, 32, 31, 52, 5, 55, 45] on the other
hand are higher-level and see memory as being organised as a number of blocks (group of memory
words) or objects. In these systems, contention is considered to occur when threads access the same
block/object, even though they may be accessing different words within it.

Word-based STMs have the advantage that they are finer-grained and thus permit more par-
allelism than object-based ones. For example, they allow threads to update different fields of the
same object concurrently. However, this typically incurs high overheads both in space and time, and
also doesn't correspond very well with modern programming paradigms. Object-based STMs on the
other hand are coarser, but as a result have less overheads and are easier to implement for languages
with objects.

A significant advantage of object-based STMs is that they do not incur additional costs during
reads and writes. This is because they typically clone objects before first accessing them and proceed
with using the clone; thus, they can use normal read and write operations. Word-based STMs on
the other hand, typically require searching a log on every read/write to obtain the most up-to-date
value, which incurs huge overheads. However, to efficiently facilitate the cloning approach, a level of
indirection is required for referencing objects so that it is possible to change which object a reference
points to atomically (e.g. using CAS) when the transaction commits. Furthermore, while the cost
of cloning small objects is not so bad, large objects pose a problem. Potential solutions include
representing such objects as functional arrays [5].

Given that object-based STMs have less overheads, this is the most common type of STM found
in the literature at present. Moreover, the above technique of cloning is the most typical approach
used in object-based STMs [31, 52, 70], although other techniques such as maintaining lists of
reading and writing transactions in each object have also been proposed [5].

2.2.2.2 Non-blocking STMs

As mentioned at the beginning of this section, initial STM implementations were non-blocking. In a
non-blocking implementation, the suspension or failure of any number of threads cannot prevent the
remainder of the system from making progress, thus providing robustness against poor scheduling
decisions as well as arbitrary thread termination/failure [32]. Consequently, it prohibits the use of
ordinary locks because, unless the thread that currently holds the lock continues to run, the lock can
never be released and therefore the non-blocking semantics cannot be guaranteed. Instead, it relies
upon the provision of special instructions, such as Compare and Swap (CAS) or Load Linked/Store
Conditional (LL/SC) that can perform atomic updates on memory. For example, Figure 2.2 is a
non-blocking implementation of the Counter class in Figure 1.3 that uses CAS. This instruction
takes three arguments: the memory location to be updated, its expected value and the value to
update it to. If the current value of counter is as expected, then it performs the update (atomically)

25

Figure 2.2: A non-blocking implementation of the Counter class of Figure 1.3.

class Counter {
int counter = 0;

void increment() {
while (! CAS(&counter, counter, counter+1)) { }
}

}

and returns true, otherwise it does nothing and returns false. In this way, it tries to ensure that the
update is atomic.?

Non-blocking algorithms can be classified according to the kind of progress guarantee they
provide [32]:

e Obstruction-freedom: This is the weakest form of progress assurance: a thread is only
guaranteed to make progress so long as it does not contend with other threads for access
to any location at the same time. This implies that threads which aren’t running cannot
prevent it from progressing, thus requiring that a transaction be able to roll back and retry.
When there is contention however, it does not prevent the possibility of livelock, whereby
a thread cannot progress because other threads keep getting into its way. The chance of
this occurring is reduced using a contention manager, which determines what to do when
contention for memory is detected. Policies include exponential back off and aborting the
conflicting transaction [52]. In the case of back off, the contention manager ensures that
a transaction is not backing off indefinitely by aborting the conflicting transaction after a
threshold is reached. Note that this doesn't guarantee the absence of livelock as a transaction
may repeatedly conflict with different transactions.

Research shows that the choice of contention management policy is application-specific and
can have a significant impact on performance [84].

e Lock-freedom: Adds the requirement that the system as a whole makes progress, even if
there is contention. In some cases, lock-free algorithms can be developed from obstruction-
free ones by adding a helping mechanism: if thread T2 encounters thread T1 obstructing it,
then T2 helps T1 to complete T1's operation. For example, it may assist in committing T1's
updates for it or yield the processor. Once that is done, T2 can proceed with its own operation
and hopefully not be obstructed again. This is sufficient to prevent livelock, although it does
not offer any guarantee of per-thread fairness [32, 31].

e Wait-freedom: Adds the requirement that every thread makes progress, even if it experi-
ences contention. This gives a hard bound on the number of instructions that need to be
executed to perform any operation and thus is the strongest non-blocking progress guarantee.
However, it is seldom possible to develop wait-free algorithms that offer competitive practical
performance [32].

2|t cannot guarantee that the update is atomic, as updates by other threads that set the value to the expected
value will go undetected.

26

Shavit and Touitou's initial STM was word-based and lock-free, using helping to achieve this.
In their implementation, each transaction acquires ownership of all locations being accessed in it
(specified up front by the programmer) before executing the body of the transaction. If a location
has already been acquired by another transaction, it helps the conflicting transaction before releasing
the locations it has already acquired and restarting. Each thread has an associated record which is
used to store information about its current transaction, such as the memory locations being accessed,
its current status and a number of other fields used to synchronise with threads that may help it.

Lock-free algorithms typically use recursive helping [31], however this can be costly in terms
of performance [86]. This STM avoids recursive helping by ensuring that memory locations are
acquired in order and by restarting transactions after they have helped a conflicting transaction.
Consequently, it is much more efficient than traditional lock-free approaches [86], although it also
has a number of disadvantages, including:

e Static transactions: Helping requires that locations are acquired in some global order, hence
the programmer has to specify up front which memory locations are accessed in the transac-
tion. This was deemed acceptable in the paper because STM was designed to make it easier
to implement higher-level non-blocking synchronisation operations such as multi-word CAS
(MCAS) [32], which require knowing the memory locations in advance anyway. However, this
is not feasible in the general case, such as for traversing dynamic data structures where it
is not known in advance which memory locations will be accessed. Furthermore, having to
specify all memory accesses upfront also breaks modularity.

e Memory overheads: A vector, the same size as memory is required to hold information
about which transaction owns the corresponding memory word. This indirection is typical of
non-blocking approaches and is one of their disadvantages. Consequently, performance also
suffers because additional cache misses will be incurred when reading a memory word. On the
other hand, such fine granularity allows more parallelism.

e Helping overhead: The only justifiable need for helping is in case the thread executing the
conflicting transaction has failed. This could be due to a hardware failure or a computer
failing in the case of a distributed system. However, distributed applications are a niche and
processor failures are extremely unlikely. Lock-free programs have to provide such mechanisms
due to the guarantee they promise, but such assurances are not in general necessary for atomic
sections [21].

On the other hand, Shavit and Touitou's STM has the advantage that it doesn’t incur the
overheads of logging present in many other STMs, given that threads are only aborted before
acquiring ownership of all required memory locations. Nevertheless, the requirement for specifying
accesses up front, the unnecessary overheads caused by helping and the memory cost make it
undesirable.

Later non-blocking implementations include Moir’s lock-free and wait-free STMs [70]. The lock-
free version splits memory up into a fixed number of blocks, which form the unit of concurrency
(object-based STM). It overcomes some of the limitations of the former STM such as the need to
specify upfront which memory locations are accessed. However, it introduces additional drawbacks
as a result. In particular, this approach uses optimistic synchronisation as described earlier and thus
introduces the need for logging, with writes being performed on copies of blocks and version numbers
being used to detect conflicts. This results in significant performance overheads due to searching the
log on each access, validation, copying blocks, committing, etc. Reads can be especially expensive

27

Figure 2.3: Example of opening an object before accessing it in object-based STMs [52]. Shared
objects have to be encapsulated within wrapper objects to allow them to be changed atomically (a). To
access the original object in a transaction, the wrapper must be ‘opened’ (b). This opening process may
perform bookkeeping, acquisition and/or consistency checks. The specific things differ between STMs.
For example, in DSTM, opening an object in write mode causes it to be acquired while in FSTM, a
copy of it is added to the transaction’s read-write list. Note that it is required that objects only keep
references to these wrapper objects and not the original ones, otherwise it would be possible to bypass
the transactional mechanisms.

Counter counter = new Counter ();
TMObject tmObject = new TMObject(counter);

(a)

Counter counter = (Counter)tmObject.open(WRITE);
counter.increment();

(b)

because incremental validation is performed (that is, the STM validates that the block being read
from is still consistent on each read). The rationale for this is that if the block being read from
has been updated by another thread, then the transaction is sure to fail and so should not carry
on otherwise it could lead to a situation that would not otherwise occur in a serial execution of
the transaction, such as memory access violations, infinite looping and arithmetic faults [67]. Other
significant disadvantages include wasted computation performed by a transaction that is destined to
abort. In STMs that only perform validation just before committing [52, 44], this is a big drawback,
although in Moir's implementation validation is incremental and thus conflicts are detected earlier.
Benchmarks show that how often validation should be performed is application-specific [67].

More recent non-blocking STMs include Fraser's FSTM [31, 32] and Herlihy et al's DSTM [52,
51]. These are both object-based and support dynamic transactions, however FSTM is lock-free
and uses recursive helping, while DSTM is obstruction-free and uses contention management. Both
clone an object before writing to them and thus require indirection for object references. This is
achieved using wrapper objects that hold references to the real ones. In FSTM, this wrapper object
is called an object header and simply holds a reference to the actual object, while in DSTM, it is
called a TMObject and instead contains a reference to a Locator object, which in turn holds a
reference to the descriptor of the transaction that last updated this particular object as well as the
current and last versions of the object. The reason for this extra level of indirection will become
clear later.

Before objects are accessed inside transactions, they have to be 'opened’ (see Figure 2.3 for an
example). An object can be opened in read mode or write mode. In both approaches, opening an
object in read mode causes it to be added (just a reference to, not copy of) to the transaction’s
read list, while opening an object in write mode has differing semantics:

In DSTM, this results in acquiring the object. In particular, it creates a Locator object storing
(1) a reference to this transaction, (2) the current value of the object and (3) a copy of it. It then
uses CAS to automatically switch the current Locator object to this new one. If the transaction

28

that is being referenced by the current Locator object is still active, this means there is contention
and subsequently a contention manager is queried for what to do (wait, abort, etc). FSTM on the
other hand allows multiple transactions to optimistically write to the same object at the same time.
Thus, it instead adds a copy of the object to a read-write list for the current transaction. Contention
is not checked for until commit time because it must acquire objects in some global order to ensure
that help cycles do not occur and thus must wait until all objects have been opened (upon trying
to acquire an object already acquired by another transaction, the current transaction recursively
helps the conflicting one before restarting). This is due to it being lock-free and consequently
leads to significantly more wasted computation. On the other hand, DSTM requires an extra level
of indirection for acquiring objects upon opening them and thus may experience slower reads and
writes as a result. Although, acquiring objects instead of optimistically updating them means that
at commit time, all the transaction needs to do is make sure that it hasn't been aborted.

Nevertheless, both approaches still have to validate that what they have read is still consistent.
This cannot be delayed till the end of the transaction, because objects may be modified by other
threads while the current transaction is executing (as copies are not made for reads). This is of
significance because it can lead to problems such as infinite looping, memory access violations and
arithmetic faults [67]. Consequently, validation has to be performed on each open for reading,
which is extremely expensive and is thus a significant problem with optimistic approaches [67].
Furthermore, with FSTM, ensuring that objects are acquired in order requires sorting their addresses
before a commit. One alternative is to keep the read-write list sorted, although the overheads would
then be incurred when inserting [67].

In summary, FSTM provides nice progress guarantees but requires that objects be acquired in
order to prevent help cycles and thus has to support optimistic updates. Consequently, conflicts
are not detected until the transaction commits, potentially leading to significantly more wasted
computation and other overheads such as sorting. Furthermore, helping is only really necessary if
a thread has failed, given that it can perform the updates itself if it hasn’t. DSTM provides the
weaker guarantee of obstruction-freedom and thus has a simpler and more efficient implementation.
In particular, it can acquire objects before writing to them, thus removing the need for validating such
objects, although it requires double indirection to achieve this. This has the downside of potentially
slower reads and writes. Moreover, both have the disadvantage of requiring objects to be opened
before accessing them plus the need for incremental validation, which has a significant impact on
performance given that it is done whether there is contention or not. On the other hand, they don't
require read /write barriers as found in word-based STMS [44, 43].

Harris and Fraser proposed an obstruction-free word-based STM [43] and were the first to
consider using STMs for implementing atomic sections in modern object-oriented languages such as
Java. Unlike Shavit and Touitou’s STM that has an array of ownership records (orecs) the same size
as memory, this STM uses a hash table of orecs whose size does not have to match that of memory
(note that if the hash table is smaller, multiple locations will hash to the same orec). Figure 2.4
illustrates this organisation. An orec may hold a version number or a pointer to the current owning
transaction for the locations that are associated with it (i.e. that hash to it). Version numbers are
used to detect conflicts and must be incremented each time one of the associated memory words is
updated.

The other kind of structure are transaction descriptors which store the current status of each
active transaction and the memory accesses that it has made so far. Both reads and writes in this
STM are optimistic, thus transaction descriptors keep track of addresses accessed, their old and new
values and the old and new version numbers of those values (old values and versions are those before
the transaction first accessed that particular orec, while the new values and versions are as a result

29

Figure 2.4: Data structures in Harris and Fraser’s word-based STM [43].

Application Ownership Transaction
heap records descriptors
| |
atl 7 version 15

r1
a2| 10 1
\m> Status: ACTIVE

a3| 200 7 a2 (100,7) = (300,8)
al: (7.15) = (7.15)

2
ad 500 Status: ASLEEP

/ a4 (500,12) — (500,12)

ab: (600,13) -> (600,13

ab 600

of executing the current transaction so far). This imposes substantial overheads while reading and
writing because firstly, the descriptor has to be searched each time for the latest values and secondly,
version numbers have to be kept consistent. Note that multiple locations may share version numbers,
thus when updating a version number in the transaction descriptor upon performing a write, the
transaction also has to update all entries for locations that map to the same orec.

When the transaction completes executing, it attempts to commit by temporarily acquiring all
orecs associated with the locations it has accessed. Acquisition involves installing a reference to
the transaction’s descriptor in these orecs and then changing the descriptor’s status to COMMITTED,
before actually writing the values to memory. However, this can only occur provided that the orec
has the same version number as that in the transaction descriptor. If the version numbers differ or
if the orec has already been acquired by another transaction, the commit fails, acquired orecs are
released and the transaction is aborted. Further details can be found in [43].

This STM has a number of significant performance issues including the overheads of searching
logs during each read/write, the overhead of determining version numbers/keeping version numbers
consistent as well as the possibility of transactions that access disjoint memory locations contending
with each other if they share orecs (see [43] for suggested improvements).

One interesting feature though of this paper is that the programmer can specify a entry condition
that must be true before the atomic section is executed. That is, the general form of their atomic
construct is: atomic (condition) { statements }. However, care has to be taken to ensure
that a nested atomic section does not have a contradicting condition such asn !'= 0 if the parent’s
condition isn == 0 and n has not yet been modified by it.

2.2.2.3 Omitting the non-blocking requirement

Semantically, non-blocking programs are desirable because they provide specific progress guarantees,
which make reasoning about them easier. However, this comes at the cost of implementation
complexity and performance. Furthermore, such promises are often too strong, covering too wide
a range of scenarios, whereas weaker guarantees would suffice in the general case. In fact, we are
already seeing this trend as newer non-blocking STMs are forsaking the assurances of lock/wait-

30

freedom and instead settling for the weaker property of obstruction-freedom because it leads to
simpler and more efficient implementations [43, 52, 50].

However, recent work suggests that even this weakest guarantee is a hindrance [21]. The main
arguments for non-blocking STMs in the literature, aside from STMs originally being designed for
use in non-blocking programs, include [21]:

e Prevents long-running transactions from blocking others: Non-blocking STMs allow
conflicting threads to proceed in parallel and hence long transactions do not starve smaller
ones. However, this argument is flawed because in order for a large transaction to be able
to commit, no conflicts must occur while it is running. This would mean that conflicting
transactions should be blocked otherwise the long transaction would never make progress.

e Prevents the system locking up if a thread is switched out: Some argue that the system
may lock up when using locks if a thread is switched out while holding a lock. This isn't
necessarily true because in the majority of cases, the thread will eventually be switched in
again. We say the majority, because it is possible for a thread to be blocked waiting for /O
which never comes, although the probability of this happening is low.

e Fault tolerance: When using locks, if a thread fails, it may not release ownership of any
locks it has acquired, subsequently preventing other threads from acquiring them indefinitely.
Non-blocking algorithms on the other hand employ mechanisms such as helping or optimistic
concurrency control enabling threads to continue even if other threads fail. However, as was
hinted earlier, this is only really of relevance for distributed applications that have to deal
with the possibility of communication failures. Failures are very unlikely for non-distributed
applications.

These arguments seem to imply that non-blocking STMs have tried to provide a one-size-fits-all
solution to transactional programming. However, such guarantees are not necessary in general, and
as shown in [21], lead to less efficient implementations. In particular, they require indirection, have
high logging overheads, require validation, lead to extensively wasted computation and also suffer
from the potential for data read to become inconsistent.

Consequently, newer STMs [21, 83, 55, 20] are omitting the non-blocking property, resorting to
hybrid blocking/non-blocking or only blocking approaches that significantly reduce these overheads.
These new implementations use locks, but whereas traditional ones can block a thread indefinitely
thus leading to problems such as deadlock, starvation and priority inversion, these locks can be
revoked and given to a waiting thread. This means that transactions must still be abortable and
thus the overheads of logging writes and the potential for wasted computation are still present.
Furthermore, given that the locking policy must be two phase, a problem is introduced for long-
running transactions, whereby they may be repeatedly aborted because they hold on to locks past the
'waiting period.” Solutions such as releasing locks early have been proposed but not yet tried [55].
It is interesting to note that using versions for reads and locks for writes, seems to provide better
performance than using locks for both reads and writes [83]. This is because of the effects on cache
that occur from multiple threads updating the lock value and the expense of upgrading from read
locks to write locks.

In comparison, lock inferencing techniques conservatively prevent against deadlock, but given
that they use traditional locking, they suffer from the problem of starvation. Furthermore, trans-
actions don't require knowing which objects are accessed at compile time and thus don't suffer
from the problem of aliasing and assignments (see Section 2.3), although they do have to enforce

31

two-phase locking. This is achieved by releasing locks at the end of the transaction [21, 83] or only
when required by another transaction (the holding transaction is first given a chance to complete
after which it is aborted) [55]. Lock inferencing would avoid upgrading read locks to write locks
because of the potential for deadlock, however, the effects on cache coherency of multiple threads
updating the read lock is a problem and will need to be taken into consideration.

AtomJava [55] is a particularly interesting state-of-the-art lock-based STM because it is a source-
to-source translator for standard Java programs. Before accessing an instance field, the thread
acquires a lock on the object. Object locks are implemented as fields that hold a reference to the
currently owning thread (null indicates that the object is free to be locked). Hence, when a thread
locks an object, this currentHolder field points to it. When in an atomic block, assigning to a field
causes a log entry to be made, consisting of the object reference, the old value and an UndoObject
with an undo function which reverses the assignment in the event of roll back (this undo code is
automatically generated by the translator). If a thread attempts to lock an object that is being held
by another thread, it requests the thread to release it as soon as possible and after a number of
polite requests, the holding thread is forced to roll-back and the requesting thread is granted access.
This provides fair scheduling, ensuring that long transactions don't cause starvation, although one
could envision the use of contention managers that determine whether/when a lock can be revoked.

2.2.2.4 Conclusion

Although STM was originally intended as an easy and more efficient way of implementing high-
level non-blocking synchronisation operations, many think that it should be provided as a generic
abstraction in programming languages (that is, as an implementation for atomic sections). This is
because it can afford more parallelism than traditional locks; it doesn't suffer from the problems of
deadlock, priority inversion, convoying and starvation; and its ability to roll back can also lead to
some desirable abstractions for programmers [44].

However, one significant hurdle it faces is expressiveness, given that atomic sections may contain
operations that cannot be reversed. Buffering is one proposed solution [42, 54], although it requires
rewriting 1/O libraries and is not even applicable in all situations. For example, consider an atomic
section that performs a handshake with a remote server. Other implementations forbid irreversible
actions using the type system [44], while some throw exceptions [82], although these are not practical
in general.

Another major problem is the significant overhead imposed including wasted computation that
occurs due to executing transactions destined to abort. A lot of work has been carried out to
improve this over the last few years, such as the gradual omission of non-blocking guarantees [21],
the introduction of object-based STMs [70] and the ability to customise contention management
policies [52, 84]. However, current state-of-the-art lock-based STMs still require roll-back to avoid
deadlock and starvation. Consequently, they still incur many unnecessary overheads due to logging,
given that the occurrence of deadlock is rare.

This project will employ lock inferencing rather than software transactions, although we hope that
this section on transactional memory has given the reader a richer understanding of this competing
technique. Furthermore, it also serves to back our choice, given the recent trend of eliminating
the non-blocking guarantee: this demonstrates that using locks to implement atomic sections is
definitely a step in the right direction.

32

2.3 Lock inferencing

By far the most popular technique for implementing atomic sections at present is software transac-
tional memory (STM). However, as illustrated in the previous section, it has a number of shortcom-
ings which limit its practicality:

e Irreversible operations: Atomic sections implemented using transactions are restricted to
operations that are reversible. In [44] this is enforced using the type system, however, this isn't
practical in more general languages such as Java. Alternative solutions include buffering [42]
and resorting to mutual exclusion locks [92].

e Performance overhead: STM incurs significant overheads due to logging, validation and
committing. In more recent STMs that use locks [55], there is no need for an explicit validate
or commit phase as they acquire ownership of objects before accessing them. Nevertheless,
they still have the overheads of logging in case they have to rollback (in order to avoid
starvation and deadlock).

e Wasted computation: CPU cycles used to execute a transaction that is later aborted is
wasted computation. This is inefficient as such CPU time could be used to execute other
threads. In one benchmark [55], it was found that tens of roll backs were occurring per
second.

e Need for hardware support: Due to the performance implications of STMs, it almost nec-
essarily requires hardware support to be practical. However, HT Ms are still not quite there yet
and face the tough task of convincing chip manufacturers of their usefulness.

These limitations exist because transactional memory (with the exception of [55]) detects inter-
ference rather than prevent it. Consequently, it requires that transactions be able to roll back, which
has a negative effect on the expressiveness and performance of atomic sections.

Locks overcome these difficulties because they do not allow conflicting accesses to proceed in
parallel and thus do not require the need to undo. However, lock-based synchronisation has to be
manually enforced by the programmer and is therefore easy to get wrong with the potential for
introducing deadlock and even re-introducing races. This has led to a completely different approach
to atomic sections that takes a preventative approach by using locks but with little or no effort from
the programmer.

Pessimistic atomic sections [69] statically infer the locks that need to be acquired to ensure
atomicity and inserts the necessary acquire and release operations. This is different from recent
lock-based STMs [55] that also use locks, because pessimistic atomic sections ensure that locks are
acquired in a way that prevents deadlock, typically by imposing some ordering as a result of a whole
program analysis, whereas lock-based STMs acquire locks as and when they are required (that is,
just before accesses occur). Figure 2.5 shows an example of a pessimistic atomic section.

Such an approach, also known as lock inferencing, has a number of advantages over TMs, in
addition to not suffering from the limitations mentioned above:

e Better performance in the uncontended case: A program typically contains some shared
objects that will be mostly contended and other shared objects that will be mostly uncontended.
The performance overheads of TMs are incurred regardless of whether there is contention or
not. Locking on the other hand, can be extremely efficient in the uncontended case, with a

33

Figure 2.5: Lock inferencing example that uses reader/writer locks.

void m(Counter c) { void m(Counter c) {
atomic { lockrw (c) {
c.increment (); c.increment ();

} }
} }

(a) (b)

lot of work having been done in optimisations for it [7, 1]. In some cases, this can be as cheap
as setting/clearing a bit [92].

e Less runtime overhead: Lock inference techniques may infer the deadlock-free locking policy
at compile time and thus the only runtime overheads are the lock/unlock operations. These
can be extremely efficient in the uncontended case, as mentioned above. However, even in the
contended case, techniques such as adaptive locking [34] can be used to reduce the overheads
caused by suspending/resuming threads when locks are held for short periods of time.

The magic behind lock inferencing is in the static analysis that determines the locking policy.
This analysis has to ensure good performance and freedom from deadlocks; however it must also
be safe. That is, the locking policy it infers should not lead to errors. The following sections look
at issues that must be taken into consideration to ensure the analysis meets these requirements and
how existing work in this area has approached them.

2.3.1 Mapping data to locks

Pessimistic atomic sections require that there is a mapping from data to locks, given that they must
first acquire the lock for a data item before proceeding to access it. This mapping, also known
as the locking granularity, can have a significant impact on the amount of concurrency permitted.
For example, if the granularity is coarse, several data items are protected by the same lock; thus
preventing concurrent accesses from proceeding in parallel. On the other hand, a finer granularity
associates very few data items with each lock, thus reducing the chance of contention and increasing
the amount of parallelism possible.

Given that such atomic sections aim to use locks without exposing the programmer to their
details, determining this mapping is the responsibility of the static analysis. In approaches where the
number of locks is bounded by the size of the program [53], this typically involves associating locks
with syntactic entities such as classes. However, given that the size of a program is finite, so is the
number of locks. As a result, such approaches don't scale well for programs that consist of a large
number of objects at runtime. For example, [53] associates a lock with each point in the program
where an object is constructed (e.g. using new). While this makes the analysis easier (as locks can
be determined at compile-time), it does not scale well because several objects may be constructed
using this same code and will consequently share the same lock (see Figure 2.6 for an example).

Ideally, lock inferencing should permit as much concurrency as possible. Therefore, the number
of locks should not be bounded by the size of the program, but instead scale with the number of
objects, preferably one for each. This is not possible with approaches that infer which memory

34

Figure 2.6: Scalability problems when the number of locks is bounded by the size of the program.
In [53], locks are associated with object construction code. Consequently, this causes several objects
created at the same point in a program to be protected by the same lock and thus concurrent accesses
to them cannot proceed in parallel.

class Bank { Thread T1:
Account newAccount () { atomic {
return new Account(); ...access al...
} }
}
Thread T2:
Bank b = new Bank(); atomic {
Account al = b.newAccount (); ...access a2...
Account a2 = b.newAccount (); }

locations are being accessed and subsequently their associated locks (such as [53]) because firstly,
the total number of objects that exist during the lifetime of a program can be unbounded and
secondly, variables may refer to different objects in different executions of an atomic section. Hence,
this would result in a huge number of memory locations being inferred and consequently locked on
each execution of the section, even though most would not need to be.

Several approaches support such fine-grained locking, by instead inferring special syntactic ex-
pressions that resolve to the accessed memory locations at runtime. For example, [18] infers paths
much like those used in Java with the synchronized keyword. In this approach, each object is
protected by its own lock (again like in Java), thus the object address itself is all that is needed
to determine the associated lock. Note that all prefixes of a path must also be locked in order to
prevent the object that the path refers to from being changed by another thread and thus meaning
that we have acquired the wrong lock.

In another proposal [69], programmers specify which locks protect which variables through guard
annotations, thus inferred paths do not refer to objects but instead the locks protecting them. This
also has the requirement that all prefixes must be locked. Unlike the object paths approach, objects
may be stored in different places from the object, thus suffering some performance penalties due to
caching. In summary, these syntactic expressions abstract the actual locations being accessed and
thus makes supporting finer-grained locking feasible. Figure 2.7 shows an example for each.

2.3.1.1 Read/write locks

The most common type of lock is a mutual exclusion lock (also known as a mutex), which ensures
that only one thread accesses an object at any one time. However, we can afford even more paral-
lelism by noting that concurrent reads on the same object can proceed without causing interference.
This can be achieved using read/write locks. Conceptually, each object has two locks associated
with it, one that must be acquired before performing a read, and the other for writes. The read lock
can be acquired provided that there are no writers, while the write lock behaves like a mutex. All
surveyed approaches do acknowledge this as a future extension (excepting [69] that already supports
it), however given that it is a straight forward extension, it isn't discussed in great depth.

To support read/write locks, the static analysis needs to infer the effects [37] of each statement.
That is, what reads and writes are performed in it.

35

Figure 2.7: Examples of approaches that support fine-grained locking. The right hand column of each
shows the transformation that results from their respective static analyses. (a) shows an example of path

inference [18] and (b) shows an example of lock inference in the Autolocker tool [69]

class Node {
Node next;

}

Node n = new Node ();

struct Node {
struct node xnext;

I

mutex lock ;
struct Node n
protected_by (lock);

atomic {
n.next = new Node ();

}

lock (n) {
n.next = new Node ();

}

atomic {
n.next = malloc(...);
}

begin_atomic ();
acquire_lock(&lock);
n.next = malloc(...);
end_atomic ();

36

2.3.1.2 Multi-granularity locking

When traversing dynamic data structures, read /write locks are typically used in a hierarchical manner.
For example, in the case of a hash table, a read/write lock will be used to protect its arrays plus
individual read /write locks for each bucket; thus looking up an element would involve acquiring the
read lock protecting its arrays and then the read lock on the bucket the element’s key hashes to. On
the other hand, if the hash table is being resized then a write lock would be acquired on its arrays
thus preventing the need to acquire locks on the buckets.

Such an organisation, called multi-granularity locking in database theory [36, 63], allows more
concurrency because concurrent accesses on different buckets can proceed. However, in reality
achieving this is not as easy as in databases due to aliasing. For example, another object could
potentially hold a reference to one of the hash table's buckets, which could therefore be accessed
without going through the hash table and thus circumventing the need to acquire the read/write
lock on its arrays. Autolocker [69] overcomes this problem using the notion of subordinated locks;
that is, a lock L1 declared as subordinated to a reader/writer lock L2 implies that L2 should also be
acquired whenever L1 is acquired. If L2 has already been acquired for writes, the acquisition of L1
will be supressed thus providing multi-granularity locking even if objects are accessed through ways
they are not supposed to.

This hasn't been explored in other approaches, however, it is likely that it will require programmer
annotations like in Autolocker.

2.3.2 Acquiring/releasing locks

Recall that atomic sections ensure that the overall outcome of a concurrent execution is equivalent
to one without any interleavings, that is, their execution is serialisable. TMs ensure serialisability
by buffering memory updates until the end of the atomic section and then performing them in one
atomic step. We can achieve the same effect with pessimistic atomic sections (where updates are
made in place) by only releasing acquired locks right at the end.

However, in general this isn't strictly required. Database theory says that a locking policy (the
strategy used for acquiring/releasing locks) will guarantee serialisability provided that it doesn’t
acquire any more locks after having released one. This implies that a locking policy more generally
consist of a growing phase whereby locks are acquired, followed by a shrinking phase in which locks
are released. Such a restriction is known as two-phase locking (2PL). Figure 2.8 is a graphical
illustration.

The most basic 2PL policy, also known as conservative 2PL, acquires all required locks at the
start of the atomic section and releases them upon having completed executing it. However, this
can limit concurrency when objects are only required for a short amount of time and other atomic
sections are waiting to access them. Furthermore, large atomic sections may need to wait a long time
before they can begin to make any progress. In the worst case this could even lead to starvation,
similar to the problem of livelock for large transactions in TMs.

To enable more parallelism, several variations of this basic policy exist:

e 2PL with late locking (strict 2PL): Delays acquiring a lock until it is absolutely necessary,
while unlocking is performed at the end. This has the advantage that atomic sections spend
less time waiting before they can start making progress, however, it is complicated by orderings
imposed for deadlock avoidance. In the worst case, it can be equivalent to conservative 2PL.
This is the locking policy used in [69].

37

Figure 2.8: Locking policies that adhere to the two-phase locking (2PL) protocol are guaranteed
to be serialisable. It stipulates that a lock must not be acquired after a release operation has
been performed, thus such a locking policy in general will consist of a growing phase in which
locks are acquired followed by a shrinking phase where locks are released. (Image adapted from
http://rainbow.mimuw.edu.pl/SO/Wyklady-html/Tanenbaum/05-26.jpg).

Growing phase Shrinking phase

1

]

1

|
»
L]

|

Number of locks

Time —»

e 2PL with early unlocking: Locks are acquired at the beginning of the atomic section, but are
released once they are no longer required. This approach can typically achieve more parallelism
than strict 2PL [24], as it is not affected by deadlock avoidance (see later), however, it has
the disadvantage of requiring to know when objects are no longer required. This is easy when
the number of locks is bounded by the size of the program but problematic if not, primarily
due to aliasing.

e Generalised 2PL: A combination of the above two variations: locks are acquired only when
they are needed, and once no more locks need to be acquired, they are released as they are
no longer required. Although it can potentially achieve more parallelism than the above two,
it is complicated by their respective issues.

2.3.2.1 Which locks to acquire

Pessimistic atomic sections require that objects are locked before they are accessed and thus insert
the necessary lock acquisitions at compile time. However, the lock required to protect a particular
access is complicated by the following issues:

Assignments

Variables can be re-assigned one or more times throughout the course of the atomic section. As a
result, the memory location being referred to by a variable at the point of the access may be different
to what it refers to at the point where the lock is being acquired. For example, in Figure 2.9(a), the
lock that needs to be acquired to protect the access to me.account.balance is the lock protecting
you.account.

In Autolocker [69] such programs may be rejected if it cannot guarantee that the resulting locking
policy will be deadlock free. This may happen if the path for a lock refers to two different concrete
locks before and after the assignment. This could potentially occur if the assignment was instead
me = you and the lock protecting me.account was me.L. To fix this, their algorithm coarsens the
granularity so that the program is then accepted.

38

Figure 2.9: Assignments (a) and aliasing (b) affect which locks should be acquired.

atomic { atomic {
me.account = you.account,; me.account = you.account;
me. account. balance = 0; khilan.account.balance = 0;

() (b)

The approach proposed in [18] infers paths to the objects themselves and acquires locks at the
top of the atomic section. Hence, for the access made in the second statement, it pushes the path
of the object being accessed, namely me . account, through the assignment by rewriting it (although
this is complicated by the issue of aliasing (see below)). This paper has the advantage that programs
are not rejected.

[25] takes a more conservative approach to dealing with the assignment problem by restricting
paths to variables and final fields. However, this has the disadvantage of limiting the expressiveness
of atomic sections.

Aliasing

Two or more variables may point to the same memory location. As a result, an assignment to an
object field accessed through one of the variables may affect which lock to acquire when an access
involving the other one occurs. For example, in Figure 2.9, me and khilan are aliases, thus the
object whose balance is being set to 0 is actually that referenced by you.account and thus the lock
protecting it must be acquired. However, if one is unsure about what may alias what (that is, a
good alias analysis is not available), then because the lock inferencing analysis must be safe, all one
can do is be conservative and assume that me, you and khilan are all aliases of each other.

The lock inferencing approaches in the literature all have conservative aliasing analyses. For
example, Autolocker [69] assumes that all non-global lock paths for the same lock type are aliases,
while [18] treats the receiving objects of all paths that have the same final field as aliases. That is,
for the paths x.f.g.s.a.g and q.g, the following are aliases: x.f, x.f.g.s.a and q. Finally, the
approach in [53] conflates locks when aliasing makes it ambiguous what objects are being accessed.

Dynamic data structures

Unlike static data structures which have a fixed size known at compile time, dynamic data structures,
such as linked lists, can be grown or shrunk as and when needed by the application. This has the
advantage that firstly, space is not wasted, and secondly, there is no bound on how big they can
be (apart from the limitations of memory). However, this latter characteristic creates a slight
complication for pessimistic atomic sections.

Consider the algorithm in Figure 2.10 that traverses a linked list. Given that the analysis is
static, we cannot infer (in general) how many nodes will be accessed as we do not know how big
the linked list is and thus can only assume that this number is infinite.

In approaches where the number of locks is bounded by the size of the program, this still means
acquiring a finite number of locks and therefore is not so much of a problem. However, in fine-
grained approaches that associate distinct locks to each object, it is similar to inferring all possible

39

memory locations being accessed in an atomic section and thus would amount to acquiring an infinite
number of locks. This is obviously infeasible and so a better approach is required.

In multi-granularity locking (see earlier), we saw that read/write locks are typically used in a
hierarchical way and thus acquiring a write lock on a data structure automatically prevents the
need to acquire locks on its internal data structures. In fact, one could say that the write lock
subsumes its internal locks. However, we also saw that to ensure this hierarchical locking order is
adhered to even when aliasing is present, we need to explicitly specify this relationship. For example,
Autolocker [69] achieves this using the notion of subordinated locks.

Subsumption can also be used to address the problem of locking an unbounded number of objects
by instead acquiring a single lock that subsumes them. This is a generalisation of multi-granularity
locking because a lock is acquired on behalf of another lock, instead of being acquired before it. For
example, in the case of Figure 2.10, one solution would be to acquire a lock on the Node class. This
subsumes all nodes being accessed as it prevents other threads from concurrently updating them.
However, it also restricts parallelism as it prevents simultaneous traversal of other linked lists and is
therefore not desirable.

Another solution is to use the lock associated with the list. This permits different linked lists
to be locked independently and thus overcomes the limitation of the previous approach. However,
this list lock would have to prevent other threads performing conflicting operations on its nodes.
Therefore, like with multi-granularity locking, we would have to specify that the nodes are being
protected by the list, also known as a guarding relationship [18].

This could be facilitated in Autolocker by allowing objects to be specified as arguments to its
protected_by annotation. Alternatively, another approach is to use ownership types [11, 18]. In
this particular example, one would specify that the main linked list object owns the nodes it contains,
which is essentially then the guarding relationship.

In papers that infer object paths, a special notation is used to represent paths of unbounded
length, otherwise, given that in our example it is not known how many times the while loop will
iterate, the analysis would infer an infinite set of paths: {x, x.next, x.next.next, ...}. There-
fore, they instead represent such infinite sets using a special path. Furthermore, locking such a path
has varying semantics. In [15] the notation is (x.next)* and locking it amounts to expanding it
at runtime until null is reached and then subsequently locking each path (in prefix order). This
approach has the advantage that it doesn’t require guards to be specified, but requires precaution
lest there be a cycle. In [18] the path x.next™ is used and locking it amounts to acquiring the lock
of the guarding object.

2.3.2.2 Acquisition order

So far we have seen that implementations of pessimistic atomic sections have two fundamental
requirements, namely that objects must be locked before being accessed and that the locking policy
must be two-phased. However, there are certain restrictions on the order in which locks must be
acquired in the growing phase, otherwise it is possible for a number of problems to occur:

Deadlock

If two or more threads attempt to acquire the same locks but in different orders, it is possible for
them to enter a deadlocked state whereby they wait on each other (see Figure 1.4). This implies that
atomic sections should acquire the same locks in the same order, typically achieved by associating
a unique number with each lock and then using this to form a total ordering.

40

Figure 2.10: When traversing a dynamic data structure, we do not (in general) know at compile time
how many objects will be accessed. Therefore, we can only assume that an infinite number of objects
will be accessed.

Node x:

atomic {
x = list.getHead ();

while (x. next)
X = X.next;

When the number of locks is bounded by the size of the program [53], it is possible to enforce
this ordering at compile time. This is because all locks that need to be acquired in an atomic section
are known. On the other hand, with fine-grained approaches that abstract away these details by
inferring path expressions, this isn’t possible without being overly conservative.

For example, recall that Autolocker [69] permits programmers to specify (through guard an-
notations) which locks protect which objects, therefore allowing each object to be protected by a
different lock. However, to be able to impose an ordering at compile-time, it has to be overly pro-
tective by treating all paths for the same lock type as aliases. This has the side-effect that because
of certain other dependencies on the locking order due to assignments (see before) and the fact that
Autolocker uses late locking, it is more likely that deadlock freedom will not be achievable (without
resorting to other means such as coarsening the locking policy).

To obtain an accurate ordering for such approaches, one would ideally need to use the address
of the actual object/lock, as this is guaranteed to be unique for all objects [18]. However, this
means that the order in which locks are acquired has to be determined at runtime. Furthermore,
to facilitate acquiring locks in order, all objects/locks to be acquired must be known at the start of
the atomic section (and stored in some collection L).

If late locking is used, as in Autolocker, then just before locking an object for the first time, all
objects with addresses lower than it in L would also need to be locked. This amounts to searching
L before each lock acquisition for objects with lower addresses, given that paths can be changed by
other threads in the mean time. Note also that if the first object accessed in the atomic section
has the highest address, all objects will have to be locked before execution can proceed, thus the
locking policy would behave in this particular case like conservative 2PL and subsequently afford no
additional parallelism.

Conservative 2PL (as used in [18]) and 2PL with early unlocking both acquire all required locks
at the start of the atomic section before proceeding. This has the advantage that it doesn't have
other dependencies on the locking order due to assignments. The code for deadlock free acquisition
at runtime is shown in Figure 2.11. Note that in (a), it is possible for another thread to change
the object being referred to by a path during this locking phase; thus a check needs to be made to
ensure that the paths still refer to the same objects (b).

One problem with the above is that threads essentially acquire locks in a non-blocking manner,
resulting in a lot of unnecessary busy waiting and suspending/resuming when locks are held for long

41

Figure 2.11: For lock inferencing approaches that support fine-grained locking and thus infer paths, the
actual locks to be acquired cannot be known at compile time. Therefore, obtaining an ordering on the
locks is not possible (without being overly conservative) and has to be deferred until runtime. This figure
shows example code suggested in [18]. Note that (a) may lead to the wrong locks being acquired if locks
are not acquired in prefix order. This may occur because prefixes are not guaranteed to be ordered by
address. Hence, after acquiring the necessary locks, a check needs to made to ensure that the paths
still point to the same objects, as shown in (b). Furthermore, observe that even if two prefixes have
their addresses swapped (due to thread interference), this won't matter because locks will still have been
acquired on those objects. This is because we are only using mutual exclusion locks here. However,
if using reader/writer locks we would need to check that each individual path is pointing to the same
object.

Object a[n] = {path_1 ... path_n};
sort(a);
lock(a[0]) . lock(a[n]);

(a)
boolean locked = false;
while (! locked) {

// lock in address order

Object a[n] = {path_.1 ... path_n};
sort(a)
lock (a[0]) ; ... ; lock(a[n]);
// check that paths still point to the same objects
Object a_after[n] = {path_1 ... path.n};
if ('a.equals(a_after))
unlock(a[0]) ; ... ; unlock(a[n]);
else
locked = true;

42

periods of time. One radical alternative, not yet considered in the literature, is to integrate this
process with the scheduler. That is, a thread passes a set of paths that it wishes to lock atomically
to the scheduler and then blocks. The scheduler acquires these locks on its behalf when they are
all available (while ensuring fairness) and subsequently resumes the thread. This has the advantage
that CPU time is not wasted, although efficiently implementing such atomic acquisition of a set of
locks could prove to be a significant challenge.

Alternative approaches for deadlock freedom include using the type system [11].
Wrong locks being acquired

Current proposals for supporting an unbounded number of objects infer special path expressions that
refer to either the object to be locked or the lock that protects it; an example path is x.f.g. It
was noted that in order to prevent the object/lock that this path points to from being changed by
another thread, all prefixes of the path (x and x.f) should also be locked. However, it is still possible
for interference to occur if the prefixes are not acquired in the right order, namely in increasing prefix
length order. Thus, for x.f.g, the correct order for locking is x, x.f, x.f.g [18].

However, this introduces the possibility of deadlock, as locks are not acquired in accordance with
some global ordering. We can overcome this by detecting when deadlock occurs, unlock all locks
already acquired and retry, although this is only possible if all locks are acquired at the top of the
atomic section otherwise we would need to rollback writes. Nevertheless, it has the advantage that
runtime costs are lower as no searching/sorting is required [18].

2.3.3 Minimising the number of locks

So far it has been assumed that all object accesses should not proceed without first acquiring its
protecting lock. This is a fundamental requirement for pessimistic atomic sections, as it ensures
that other threads cannot perform conflicting updates at the same time. However, it is often the
case that only a subset of these locks need to be acquired to ensure atomic execution. For example,
only shared objects need to be locked because only they can be accessed by multiple threads.

Minimising locks in this way has the advantage of reducing the runtime overheads imposed by
acquiring/releasing locks. However, how much it can actually reduce this depends on whether it is
performed statically or dynamically. Static analyses [17, 53, 54, 15] have to consider all possible
executions of the atomic section and so will be less optimal than dynamic analyses that can make
decisions based on current thread behaviour [78]. For example, in approaches that infer paths, if
a path can refer to both shared and local objects, then it cannot be removed if the analysis is
static, whereas a dynamic analysis would treat each binding separately. On the other hand, dynamic
analyses need to speculate thus requiring the ability to roll back if they make a mistake, whereas
static analyses are safe. Furthermore, dynamic analyses will impose their own runtime overheads,
which will most probably render them useless.

In this section, we look at when a lock may be unnecessary and the associated (static) techniques

for detecting such cases.

2.3.3.1 Thread shared vs. thread local

Recall that interference occurs when two or more threads simultaneously perform conflicting opera-
tions on an object. However, if an object is only accessed by one thread, that is, it is thread local,
then it is not possible for interference to happen and thus a lock does not need to be acquired for
it. A number of techniques exist to determine which objects are thread shared and which are thread

43

local:
Escape analysis

This is a whole-program analysis whose aim is to determine if an object is accessed outside the
method and/or thread it was created in. Central to it is the notion of escapement [17]:

e An object O escapes a method M if the lifetime of O may exceed the lifetime of M. This
allows objects to be allocated on the stack avoiding the overheads of garbage collection.

e An object O escapes a thread T if another thread T’ # T, may access O.

Furthermore,

e If an object O does not escape a method M, then this implies that it also doesn’t escape the
thread T in which M was invoked/O was created in.

The analysis [17] first performs an intraprocedural analysis for each method, building up a con-
nection graph. Nodes in this graph represent reference variables and objects (constructed using new
like in [53]) while edges describe the connection between variables and objects. These edges are of
two types: points-to edges between a variable node and an object, and deferred edges between two
variable nodes. The latter type is used to model assignments that merely copy references from one
variable to another [17]. During graph construction, an object can be classified as NoEscape (local
to method), ArgEscape (escapes the method via its arguments but does not escape the thread)
or GlobalEscape (escapes threads and methods). This is updated iteratively using the following
observations:

e An object reachable from a global variable node is classified as GlobalEscape.

e An object reachable from an actual argument node (as opposed to from a formal argument
node) is classified as ArgEscape

e Objects reachable from other objects that are classified as GlobalEscape are also classified as
GlobalEscape.

e Objects reachable from objects that are classified as ArgEscape are also classified as ArgEscape
(unless they are already GlobalEscape).

After the intraprocedural stage is complete, an interprocedural analysis in conjunction with a
program call graph (that describes method calls) is performed to combine the connection graph of
callees with that of callers. Finally, thread local objects are those which are classified as NoEscape
or ArgEscape. Please refer to [17] for the full details.

Continuation effects

The effect of a statement s is the set of locations that may be dereferenced or assigned to while
executing it. Thus, continuation effects are the locations that may be accessed during and/or after
the execution of s [53]. They can be divided into input effects denoting the locations that may be
accessed during and/or after s, and output effects for those accessed after.

Most multi-threaded programming languages provide mechanisms for spawning threads, such
as fork() in C and Thread.start() in Java. The significance of continuation effects is that by

44

Figure 2.12: Code for continuation effects example.

Counter cl = new Counter ();
Counter c2 = new Counter ();

spawn {
for(int i=0; i<99; i++)
cl.increment();

c2.increment ();

}

cl.increment();

calculating the input effect of the spawned child thread, namely the locations accessed by it, and the
output effect after the thread creation call in the parent thread, and then taking the conjunction,
we can infer those locations that may be accessed by both child and parent threads.

Figure 2.12 shows an example to illustrate this. The example uses a spawn construct that
executes the containing code in a separate thread. The spawned thread accesses the counter
values of objects c1 and c2, and thus its input effects are c1.counter, c2.counter}. Note that
as we are interested in the input effects of the spawned thread, as opposed to the spawn statement,
this means that it only includes locations accessed by the thread itself.

The output effect of the spawn are those locations accessed after it in the parent thread, namely
cl.counter. Hence the intersection gives us c1.counter and thus we infer that only c1 is shared.
Note that even though c2 is created in the parent thread, it is only accessed in the child thread and
is thus considered thread local to it.

This example didn’t include atomic sections as it is just illustrating the concept of continuation
effects. However, one could imagine extending it so that the effects of atomic sections are considered.
For example, consider the child's thread and c1.increment () in the parent thread being wrapped
inside atomic sections. Then, in both atomic sections c1 has to be locked due to the reasons
mentioned above.

2.3.3.2 Conflating locks

In [53], it is observed that if in every atomic section that accesses p’, p is also accessed, then only
p needs to be locked and not p’. The paper describes this as p dominating p'.

This optimisation removes redundant locks but is only applicable when the number of locks is
bounded by the size of the program, given that the actual locks that will be acquired are not known
when they are unbounded. Furthermore, it doesn’t always lead to the minimal set of locks when no
dominator exists, even though it is possible to reduce the number of locks. Figure 2.13 demonstrates
this point.

45

Figure 2.13: The ‘dominates’ algorithm of [53] does not always lead to the minimal set of locks required
as demonstrated by this example. Three threads are each executing distinct atomic sections that access
locations shared with the other two threads (a, b and ¢ are memory locations). If the locking policy
is conservative 2PL, neither atomic section can be executed simultaneously, as it would need to wait
until the other two threads have finished executing. Hence, only one thread can execute at a time and
thus only one lock is required for all three atomic sections. However, the ‘dominates’ algorithm relies
on dominating memory locations, which do not exist. As a result, it cannot even reduce the number of
locks let alone infer that only one is required.

Thread 1 Thread 2 Thread 3
atomic { atomic { atomic {

.access a... ...access b... ...access C...

.access b... ...access c... ...access a...

2.3.3.3 Constant paths

If a path is constant, it cannot be modified by another thread and thus does not need to be locked.
Although languages like Java, in which constant paths are denoted using the modifier final, allow
deferring the initialisation, which incidentally could occur in an atomic section. If this is the case,
then this optimisation cannot be used.

2.3.3.4 Inside atomic sections vs. outside atomic sections

In addition to the distinction between thread shared and thread local data, as well as data that is
constant, [54] makes the novel proposal of also distinguishing between objects that are accessed
inside atomic sections and those not. This is used to remove unnecessary read /write barriers outside
atomic sections that are inserted to ensure strong atomicity in their source-to-source translator.
However, with regards to path inference, it could potentially be used to filter those paths which may
refer to thread-shared objects but which are only accessed outside atomic sections.

2.3.4 Starvation

In [43], the problem of non-terminating atomic sections in STMs is discussed. While the particular
scenario in the paper (reproduced in Figure 2.14) cannot occur with lock inferencing techniques,
the potential for non-terminating atomic sections still remains. This could be a serious problem
because the executing thread will hold on to acquired locks starving others indefinitely. Incidentally,
starvation can also occur when a thread blocks while holding a lock, although it is assumed that it
will eventually be resumed and thus release the lock.

TMs don’t have this issue because transactions can be rolled back, however, pessimistic atomic
sections don't have this luxury and thus this problem cannot be prevented completely. However, it can
be minimised by locking policy optimisations such as early unlocking, late locking and downgrading
write locks to read locks (note: upgrading of read locks to write locks can lead to deadlock [80]).

No lock inferencing technique has looked at addressing this issue directly yet, perhaps because
it isn't possible to overcome.

46

Figure 2.14: Starvation due to non-terminating atomic sections. This example (although not originally
object oriented) was presented in [43] to demonstrate how conflicting updates made by other threads
can lead to non-terminating transactions (in STMs). In particular, if thread T1 reads the value of z.val
before thread T2 executes (thus having value 0) and then reads y.wval after T2 commits (subsequently
having value 1), the if condition evaluates to true and the infinite loop is executed. This does not
occur with lock inferencing techniques as = and y are locked before being accessed. However, it doesn’t
eliminate the possibility of atomic sections that do not terminate. This is a problem for lock inferencing
techniques because it prevents other threads from ever acquiring the necessary locks. For example, if
z.val and y.val were originally different, it would cause T1 to enter the infinite loop hence preventing
T2 from ever proceeding (assuming that T1 acquired the locks first).

Thread T1:
class Integer { atomic {
int val = 0; if(x.val I= y.val)

Integer (int initial) { while (true) { }

val = initial;
) } Thread T2:
atomic {
- _ x.val4+;
Integer x = new Integer (0); v valit:

Integer y = new Integer (0);

}

2.3.5 Nested atomic sections

Several different semantics have been proposed for nested atomic sections in transactional memory
systems [72] to minimise its overheads and also allow inter-thread communication between atomic
sections. However, with lock inferencing it hasn't been looked at in any detail. This may be because
of the requirement for the inferred locking policy to be two-phased and/or locks requiring to be
acquired in some order to ensure that deadlock is avoided. Hence, nested atomic sections are
currently just merged with their parent.

However, this poses concerns for the liveness properties of programs, especially when paths are
locked at the top of the atomic section, given that there may be a large number of them.

2.3.6 Source code availability

Lock inferencing performs a whole-program analysis to infer which locks need to be acquired. How-
ever, current techniques require the source code being available. This can be a problem when using
external libraries as these are normally provided in a compiled form. In this case, a byte-code analysis
would be required instead, although this is orthogonal to this project given that we are interested in
the more fundamental challenges that determine whether pessimistic atomic sections are viable or
not.

2.3.7 Conclusion
STMs have generated intense interest over the last few years and are currently the most popular

technique for implementing atomic sections. However, they still have a number of significant hurdles
that they need to overcome, most critical being their inability to flexibly support irreversible opera-

47

tions. Furthermore, the overheads incurred by STMs is insensitive to the amount of contention there
is, thus leading to significantly slower execution even in the common case of uncontended execution.
Hence, this has led to the consideration of a different approach to atomic sections, namely that
of lock inferencing. This technique statically infers the locks that need to be acquired to ensure
atomicity and inserts the necessary acquire and release operations. This is different from recent
lock-based STMs because such pessimistic atomic sections ensure that locks are acquired in a way
that prevents deadlock, thus not requiring the need to rollback.

The magic behind lock inferencing is in the static analysis that determines the locking policy.
This analysis has to ensure good performance and freedom from deadlocks, however, it must also
be safe. Performance is determined by the amount of parallelism that the locking policy can afford,
which depends on the granularity of the locking as well as the type of locks used. In some papers [53],
the number of locks is bounded by the size of the program resulting in a coarse granularity that
doesn't perform well in programs that have a large number of objects. Other approaches [69, 18]
support fine-grained locking, with each object having its own lock. This affords more parallelism as
it allows concurrent accesses of different objects.

However, this poses a challenge when determining which locks to acquire in an atomic section,
given that in such approaches the number of locks may be unbounded (as the number of objects can
be unbounded). Existing work has dealt with this problem by inferring special syntactic expressions
that resolve at runtime to the object/lock being accessed. This has the advantage over approaches
that infer and lock all possible memory locations which may be accessed in an atomic section, in
that they are significantly smaller in number and also result in only locking the actual objects being
accessed at runtime.

Performance is also dependent on the type of locking policy used. Database theory says that
locking policies should be two phased (2PL) to ensure that the resulting concurrent interleaving can
be made equivalent to one in which atomic sections are executed one after the other, or alternatively,
to ensure that atomic sections are serialisable and thus ensure atomicity. A two phased policy
stipulates that additional locks must not be acquired after a lock is released implying that there be a
growing phase during which locks are acquired followed by a shrinking phase during which locks are
released. A simple version of this would be to acquire all locks at the beginning of the atomic section
and release them at the end. However, to permit as much concurrency as possible, locks should
be held for the shortest period of time. Thus, a number of variants of the aforementioned basic
policy exist such as late locking (strict 2PL) that acquires locks only when absolutely required and
early unlocking that releases locks as soon as they are no longer needed. Additional optimisations
include using reader/writer locks and minimising the number of locks using techniques such as escape
analysis and continuation effects.

Pessimistic atomic sections are further complicated by the need for the locking policy to avoid
deadlocks. This typically requires ensuring that locks are acquired in some globally defined order.
In approaches where the number of locks is bounded, this can be determined statically, while in
dynamic approaches that infer path expressions, it is not possible without being unduly conservative.
To overcome this, ordering should be performed at runtime, although this has the disadvantage of
imposing additional overheads such as for sorting.

Furthermore, paths must be locked in prefix order to prevent the wrong lock being acquired. As
a result, the aforementioned technique has the additional overhead of having to check after acquiring
all the locks that the paths still refer to the same memory locations. Note that the occurrence of
deadlock is rare, hence instead of actively avoiding deadlock we can instead let it occur and then
deal with it when it occurs (by releasing acquired locks and retrying to obtain them). Although this

48

has the requirement that all locks must be acquired together (otherwise we would have to rollback
writes) and thus means that late locking (strict 2PL) cannot be used.

Additional complications to the above issues include assignments, aliasing and the problem of
traversing dynamic data structures whereby one cannot in general know at compile time how many
elements they will contain and thus how many objects will be accessed. As a result, one has to
assume that a potentially unbounded number of elements may be accessed. Solutions include using
guards [69, 18].

Existing work has only looked at a subset of features that modern programming languages
provide. In particular, features such as subclassing, polymorphism, arrays, exceptions, recursion
and inter-process communication still haven't been addressed yet, while alias analyses can be overly
conservative at times. This project looks at extending existing work by considering such features. It
will be a direct extension of the work done on path inference [18].

There are also a number of other more worrying problems related to progress such as starvation,
which will also be looked at in this project.

2.4 Hybrids

One of the biggest problems with transactional memory is the overhead incurred for supporting roll
back. This overhead is insensitive to the amount of contention there is and can lead to significantly
slower executions in the common case of when there is none. Furthermore, they have trouble dealing
with irreversible operations, having to revert to mechanisms such as buffering, which incidentally do
not provide a general enough solution. However, they do have the advantage that they can afford
more concurrency. Locks on the other hand have the advantage of being extremely efficient in the
uncontended case as well as not suffering from problems of expressiveness, although in general they
don't permit as much concurrency, especially if mutual exclusion locks are used.

As a result, a hybrid approach has been considered [92] (in the context of Java) that uses
locks when there is little or no contention or if an irreversible operation is encountered and software
transactions (object-based STM) otherwise. Recall that programmer intent is mostly atomicity when
using mutual exclusion locks, hence this paper considers synchronized blocks (that protect the
same object) as atomic sections (referred to as monitors in the paper).3

Contention occurs when a thread tries to acquire a lock already held by another thread, that is,
two threads are attempting to execute a synchronized block protecting the same object. If this
happens, execution switches to using transactions, although only after the lock is released by the
currently holding thread. Furthermore, if a thread is currently executing a monitor transactionally
and encounters an irreversible operation, such as 1/0, it reverts to using locks. For this, a log must
be kept of all locks that would have been acquired if the outermost monitor had executed using
locks. If a lock cannot be acquired because it is being held by some other thread, the innermost
monitor (of the current thread) is rolled-back and re-executed.

In theory this approach should provide efficient execution when there is no contention and
scale fairly well when there is, however, it has a number of problems. Firstly, while atomicity is
what synchronized blocks are commonly used for, it is not always the case. Moreover, even if a
programmer had intended on atomicity, what is to say that they have used synchronisation correctly?
Additional checks would still need to be made to verify this, using type systems for example. This
implies that such an approach does not provide an abstraction as such but is instead aimed at

3Although it has been shown that executing synchronized blocks as transactions may break a program that relies
on races for progress [10].

49

improving performance. Furthermore, the paper does not detail how deadlock is avoided, given that
a wait-cycle may occur due to threads having to wait for locks to be released before executing the
monitor transactionally. Finally, performance comparisons using mutual exclusion locks are not very
revealing given that reader/writer locks afford much more parallelism, although in the context of
Java, mutual exclusion locks are appropriate.

2.4.1 Conclusion

Hybrid execution is an interesting idea and one could envision using lock inferencing to infer which
locks need to be acquired for atomic execution and then applying the optimisation proposed in
this paper, although significant overheads occur to support this approach as shown in the paper's
benchmarks. For example, in the uncontended case, these can be upto 50%! One thing we can take
from this paper is that it once again gives promising evidence that any implementation for atomic
sections will need to use locks in some way or another.

50

Chapter 3

Specification

When trying out new language features, language designers take one of three approaches:
Modifying an existing language implementation

An existing language, such as Java, is modified to support the feature natively by making amend-
ments to the compiler and/or runtime system [43, 82]. This can be a significant engineering chal-
lenge, given that these systems are typically huge and complicated, with lots of subtle details that
need to be taken into consideration. Furthermore, modifications of this type require patching the
runtime/compiler, which may not be welcomed by the vast majority. It also quickly becomes obso-
lete if not kept up-to-date with newer versions of the language implementation. Thus, this option
should only be chosen when one is contemplating on actually adding the feature to the language,
with most conceptual hurdles having been overcome.

Lock inferencing is still at a stage where there are a number of fundamental areas and issues
that need to be looked at and thus requires a lot of freedom. Furthermore, modifying a language
requires spending a considerable amount of time understanding an existing system, which leaves
little time for experimentation. Hence, this project will not take this route.

Pre-processing

This approach involves extending an existing grammar to allow programs with the proposed language
feature, and then providing a source-to-source translator that compiles these programs into the orig-
inal language, using its existing language features to implement the proposed one. For example, [55]
takes Java programs containing atomic { } sections as input, replacing them with the necessary
Java code for ensuring atomicity.

This approach has the advantage that it avoids the complexities of modifying an existing com-
piler/runtime and thus affords fast prototyping. It is easy to distribute and only needs revising when
the language itself changes, which is generally a lot less frequent than updates to its implemen-
tation. However, it has the disadvantages of relying on an uncontrollable back-end and having to
compromise semantics when features are simply unavailable (e.g. rolling back class loading in [55]).
Furthermore, it also has the burden of dealing with the full set of features in the existing language.
Hence, this project will not take this route either.

Toy language

A simple language is implemented with just those features necessary to evaluate the viability of the
proposed language feature. It provides a testbed for flexible experimentation without being engulfed

51

in implementation detail or a plethora of language features.

Performance is not of primary importance and thus an interpreter may be used for executing its
programs. This gives full control over what happens at runtime and also permits close monitoring.
Writing an interpreter for an existing language is infeasible given the number and complexity of the
features.

However, this approach has the disadvantage that it is essentially throw-away code. That is, it
has no use outside of research. Furthermore, given that there are minimal language features, one
may have to be creative when coming up with example programs.

Nevertheless, because this approach best facilitates the aims of this project, namely to explore a
much wider set of language features than have been covered in previous work, it will be the chosen
option. Even though it will not be usable in the practical sense, we hope that the ideas that come
about as a result of such flexibility can be built upon by later work to consider extending a real
language.

3.1 Language

The aim of this project is to look at a much wider variety of language features than has been
considered by any existing work on lock inferencing that supports an unbounded number of locks.
However, given the research nature of this project one should bear in mind that it is very difficult to
gage how many features will actually be covered.

e Singlestep will be object-oriented, although it does not have to be pure. That is, it may
have primitive types like in Java. However, these may be later represented as objects instead
if deemed necessary, such as for allowing a much finer granularity of locking.

e It must be multi-threaded, with mechanisms that allow the programmer to explicitly spawn
threads, such as fork() in C.

e Each object should have an associated reader/writer lock and the language should provide
constructs to lock (and unlock) an object either in read mode or write mode.

e The language should allow programmers to denote that a method /block of code should execute
atomically, using the atomic keyword for example. The semantics are not provided by the
runtime, but by a static analysis that inserts the necessary locks, although runtime support
(e.g. scheduler) may be utilised if necessary.

e Given that speed is not of importance and that we are experimenting with a toy language, an
interpreter can be used rather than a compiler. This will also make it easier to analyse and
control execution behaviour.

e |t should support inheritance and polymorphism.

e It should also support arrays (at least one dimensional).

e The language should be statically type checked.

e The language should allow limited /O such as printing to the screen.

e The language may later support encapsulation, although this is not very important as it would
be removed by the analysis anyway to support locking objects at the start of an atomic section.

e It should support exceptions much like Java's try/catch block and throw statement.

52

3.2 Analysis

e The main outcome of this project is a static analysis that takes source code written in
singlestep, and inserts the necessary locks to ensure atomicity.

e The analysis only needs to ensure weak atomicity, that is, atomicity between atomic sections.
This is because programs may rely on races for progress, such as in lock-free algorithms.
However, an existing race-detection tool could be used to warn the programmer of races (after
having inserted locks).

e The analysis will primarily build upon the work done by Dave Cunningham [18] but extended
to cover a richer set of language features. Thus, it will infer and lock paths.

e Nested atomic sections should be supported.

e In atomic sections, all objects must be locked before being accessed. The analysis should
support fine-grained locking, with each object having its own lock. It should also discrimi-
nate between reads and writes, allowing several threads to perform reads concurrently, while
resorting to mutual exclusion for writes.

e The number of locks should scale with the number of objects and not be bounded by the size
of the program.

e The locking policy inferred should be two-phased (2PL). That is, no further locks should
be acquired after a lock has been released. This is to ensure that the resulting concurrent
interleaving can be made equivalent to one in which each atomic section is executed one after
the other.

e Locks should be held for as short a time as possible. Thus, a variant of 2PL such as late
locking or early unlocking should be used. Write locks should also be downgraded to read
locks when an object is only read after a particular program point, although read locks should
not be upgraded to write locks as this can lead to deadlock.

e It should try to minimise the number of locks by discriminating between thread local and
thread shared objects. This can be fine-tuned by additionally distinguishing between objects
accessed inside atomic sections and those not.

e It is also hoped that the alias analysis is less conservative than previous approaches. This
should be possible when considering the program as a whole as opposed to dealing with each
atomic section in isolation.

e Deadlock should not be allowed to occur. This can be achieved by imposing an ordering on
lock acquisitions, although given that the number of locks is unbounded, this would have to
be done at runtime. Alternatively, paths could be locked in prefix order with deadlock being
detected instead of avoided. In this latter scenario, an exception may be thrown and locks
re-acquired. This approach has the advantage that it doesn't require sorting of addresses at
runtime and is more efficient given the rarity of deadlock occurrence.

e Both dynamic approaches for deadlock avoidance require that all locks are acquired at the top
of the atomic section and thus our analysis can only use conservative or early unlocking 2PL.

e The analysis can assume that all source code is available, although in reality it may not be.
In the latter case, a byte-code analysis would be required although this is beyond the scope of
the project.

53

3.3

3.4

When faced with the task of locking a potentially unbounded number of objects, there are
a number of options such as locking the objects’ class or using guards. The problem with
guards is that they require programmer annotations, which may impose a big overhead for
large programs. Hence, a hybrid approach could be used instead where the class is locked
by default, but which allows the programmer to improve the precision by providing guarding
annotations. Checking whether the guard annotations are correct is beyond the scope of this
project.

Multi-granularity locking refers to the hierarchical use of reader/writer locks, such that ac-
quiring a write lock at one level prevents the need to acquire locks on lower levels. It has
the advantage of reducing the number of locks that need to be acquired, although its use
is restricted to situations where an object owns other objects and where all accesses must
go through that object. Hence, this is not required at all times and is thus not of utmost
importance.

Runtime

The runtime will not be concerned with speed, although it may wish to apply certain optimisa-
tions that are not related to how fast it can execute statements, such as using adaptive locking
to prevent threads from being suspended/resumed when locks are held for short periods of
time (and the conflicting threads are running on separate cores).

When executing statements, the interpreter should use small-step semantics to mimic what
really happens when code is executed at the machine level and to allow interference to occur.

Multithreading should be simulated by the runtime as opposed to forking native threads making
it possible to closely monitor the execution. This will require a scheduler.

The runtime should also be able to utilise multiple cores so that the effects of true parallelism
can be investigated.

It should offer debugging facilities in which the state of individual threads can be inspected.

This debugger should support single stepping.

Testing

The most important component of this project is the static analysis that infers which paths need
to be locked for atomicity. Programmers assume that it will provide this guarantee with errors
possibly leading to disastrous consequences [64]. Hence, it should be critically tested for correctness.
However, given that there are infinitely many inputs, ideally a formal abstraction like that used in
Autolocker [69] should be utilised. In this section, we describe example input programs together
with the expected output. For brevity, code snippets are small and avoid method calls unless where
absolutely necessary. Furthermore, they don't include the (boilerplate) code for deadlock avoidance.

The basic analysis should lock all accessed paths, including all prefixes, at the top of the
atomic section. They should be unlocked in reverse prefix order by the end of the atomic
section (exactly where depends on whether conservative or early unlocking 2PL is used).
It should correctly distinguish between read and write accesses.

54

Input Output

atomic { lockr(x); lockr(x.f); lockrw(y); {
Object o = x.f.g; Object o = x.f.g;
y.i = 3; y.i = 3;

} }

unlock(y); unlock(x.f); unlock(x);

It should deal with assignments like in [18]. Write accesses should subsume read accesses.

Input Output
atomic { lockrw(x); lockrw(y); lockrw(y.acc); {
X.acc = y.acc; X.acc = y.acc;
x.acc.bal = 10; x.acc.bal = 10;
y.acc = 10; y.acc = 10;

} }

unlock(y.acc); unlock(y); unlock(x);

It should downgrade write locks to read locks when it is sure that the corresponding path
is no longer modified after a particular program point.

Input Output
atomic { lockrw (x); {
x.f = 3; x.f = 3;
int y =x.g; downlock (x);

.use y... int y =x.g;
} ...use y. ..

}

unlock(x);

When it is possible that an unbounded number of paths may be accessed, the special infinite
path [18, 15] should be inferred.

Input Output
atomic { lockr (x{.next}x); {
while (x. next) while (x . next)
X = X.next; X = X.next;

} }

unlock (x{.next }x);

If polymorphism is supported by the language, it is possible that some inferred paths will
not be valid. Therefore, the analysis should use static type information and discard those
which aren’t. For example:

55

Supporting classes and shared objects

class Integer { int val; }

class A {
Integer x;

void f() {
print x.val;

}
}
A a = new A();
B b =new B();

Input

atomic {
if (condition)
a = (A)b;

a.f();
}

class B extends A {
Integer y;

void f() {
print y.val;
}

}

Output

lockr(a); lockr(a.x);
lockr(b); lockr(b.y);
{
if (condition)
a = (A)b;

a.f();

}
unlock(b.y); unlock(b);

unlock(a.x); unlock(a);

The analysis should be safe with respect to aliases. That is, if it is not sure whether
two paths may alias each other, it should assume that they do (although considering the
program as a whole should improve precision).

Input
atomic {
x. f =y.f;
z.f.g = 10;

}

Output

lockrw(x);
lockr(y); lockrw(y.f);
lockr(z); lockrw(z.f);
{
x.f=y.f;
z.f.g = 10;
}
unlock (x);

unlock(y.f); unlock(y);
unlock(z.f); unlock(z);

56

3.4.1 Additional tests

A large suite of tests should also be developed to ensure that the various other components work
correctly:

3.4.1.1 Language behaviour

e Unit tests should exist for each language feature.

3.4.1.2 Runtime behaviour

e Interleaving of threads should be consistent with the scheduling policy.
e At each step, execution performs a single reduction.

e The debugger should correctly reflect the current state of the runtime.

3.5 Documentation
Documentation is extremely important in any project, as it enables the work carried out to be built

upon. As part of this project, a report should be produced detailing decisions taken together with
justifications.

57

Chapter 4

Evaluation

Atomic sections guarantee that the contained code will execute as if in ‘one step.” Therefore, an
important part of the evaluation of this project is to ensure that the inferred locking policy actually
does ensure atomicity. Furthermore, this project’'s main goal is to consider a much wider set of
language features than has been covered by previous work. Hence, we also evaluate our proposed
solutions to these by considering a wide range of concurrent problems that capture fundamental
aspects of concurrent software. These will also serve the purpose of demonstrating what lock
inferencing can and can't do, although at this stage it is hard to tell. Finally, atomic sections should
aim to permit as much parallelism as possible. Therefore, we also evaluate performance.

4.1 \Verifying correctness

Atomic sections that don't ensure atomicity are useless, thus we must verify correctness for our
implementation. Recall that much work has been done to verify atomicity with the most popular
approach being the use of type systems with Lipton's reduction [65]. To verify correctness, we will
also use this technique.

4.2 Language features

As previously mentioned, the primary goal of this project is to apply lock inferencing to a much larger
set of language features than has been considered in previous work. An ideal way of evaluating this
would be to apply our implementation to a wide range of concurrent problems. These will also serve
the purpose of demonstrating what pessimistic atomic sections can and can't do, although at this
stage it isn't clear which category they will fall into.

e Red-black tree [95]: This is a tree data structure frequently referred to in the literature for
atomic sections/software transactional memory because of the apparent complexity involved
in implementing synchronisation correctly for it. We will be the first to demonstrate lock
inferencing on it. Additionally, this will enable us to evaluate the ability to cope with potentially
accessing an unbounded number of elements.

e Hashtable: Hashtables are used in the literature to show how well the proposed approach
deals with varying levels of contention as well as its scalability to increasing numbers of CPUs.
We will also consider it for this purpose.

e Bounded buffer/Producer and consumer problem: This forms a very important class of

58

programs, whereby producer threads put data into a bounded buffer, which is subsequently
removed by consumer threads. One would imagine that the act of putting/taking an element
from the buffer would be atomic, however this poses a challenge for atomic sections because it
may not be possible for a producer or consumer to continue as the buffer may be full or empty
respectively. Recent proposals for STMs include a retry keyword [44] that has the effect of
rolling back the transaction and blocking it until one of the locations the current transaction
has previously read is updated. Hence, if a producer finds that the buffer is full, it will execute
retry, blocking until the state of the buffer changes. With pessimistic atomic sections, we
have to resort to other means given that we cannot roll back nor block while holding a lock
on the buffer because this will prevent other threads from accessing it.

e Dining philosophers problem: The well known dining philosophers problem is the classic
example used for demonstrating the concept of deadlock: A number of philosophers sit around
a dining table, each sharing a fork with their neighbour. Each philosopher executes a loop
of thinking for a little while, before having something to eat and then thinking again. Before
eating, they must acquire both forks, blocking if any of them are currently in use. However,
care has to be taken to ensure that deadlock does not occur where each philosopher waits
on its successor. With atomic sections, this is really easy to implement given that all it
requires is wrapping the eating code inside atomic { }. However, this example can generate
a considerable amount of contention if philosophers spend very little time thinking, potentially
leading to never ending rollbacks in an STM implementation. This is not a problem with
pessimistic atomic sections of course and demonstrates one of its strong points.

e Parallel mergesort: Mergesort is one of several well-known sorting algorithms in Computer
Science. It works by first dividing the dataset into two halves, sorting each half and then
merging them together by making pairwise comparisons of elements from each. This is an
interesting problem for atomic sections, because although each half can be sorted in parallel,
the synchronisation may not allow this given that locking policies must be two-phase and read
locks cannot be upgraded to write locks (to avoid deadlock). Parallel mergesort is also a
problem for STMs, given that it requires threads to block until both halves have been sorted
before performing the merge.

4.3 Performance

Performance is an important factor for any implementation of atomic sections, given that program-
mers typically want their software to be as fast as possible. However, while ideally we would like
to compare our implementation against software transactional memory as well as other attempts at
pessimistic atomic sections, this would be beyond the scope of the project. Furthermore, our use
of a toy language means that we must abstract away the notion of time as it is meaningless in this
context.

4.3.1 Benchmarks

To evaluate the performance aspect of this project, we will benchmark three versions of the afore-
mentioned concurrent problems:

e Manual locking: This will include both coarse and fine-grained policies.

e Lock inference: Implementation using our atomic sections.

59

e Non-blocking: Implementation that uses non-blocking primitives such as Compare-and-Swap

(CAS).

4.3.1.1 Metrics

As mentioned above, employing a toy language means that we cannot reliably use metrics that have
a notion of time associated with them and must instead use more abstract ones. However, we do
have the advantage of being able to control fully how threads are scheduled and thus can ensure
that these are reliable. This project will use the following metrics:

e Number of computation steps taken by a thread to complete an operation (such as inserting
an element into a hashtable).

e Number of times that threads are resumed/suspended as a result of lock contention and for
how long (in terms of computation steps). This will reveal information about the overheads
caused by locking.

e Number of threads (logically) executing in parallel at the same time (or as a proportion of
the total number of threads in the system). This will reveal information about the amount of
concurrency in the system.

In order to evaluate this project, the language may require additional constructs to those already
suggested, although this cannot be determined at this stage.

60

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

O. Agesen, D. Detlefs, A. Garthwaite, R. Knippel, Y. Ramakrishna, and D. White. An effi-
cient meta-lock for implementing ubiquitous synchronization. Proceedings of the 14th ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
pages 207-222, 1999.

G. Agha. Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge, MA, USA, 1986.

E. Allen, D. Chase, V. Luchangco, J. Maessen, S. Ryu, G. Steele Jr, and S. Tobin-Hochstadt.
The fortress language specification. Technical report, Sun Microsystems, September 2006.

C. Ananian, K. Asanovic, B. Kuszmaul, C. Leiserson, and S. Lie. Unbounded transactional
memory. High-Performance Computer Architecture, 2005. HPCA-11. 11th International Sym-
posium on, pages 316-327, 2005.

C. S. Ananian and M. Rinard. Efficient object-based software transactions. In Proceedings,
Workshop on Synchronization and Concurrency in Object-Oriented Languages, San Diego, CA,
Oct 2005. In conjunction with OOPSLA’05.

C. Artho. Finding faults in multi-threaded programs. Master’s thesis, ETH Ziirich, 2001.

D. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin locks: featherweight synchronization
for Java. Proceedings of the ACM SIGPLAN 1998 conference on Programming language design
and implementation, pages 258-268, 1998.

U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic program parallelization.
Proceedings of the IEEE, 81(2):211-243, 1993.

N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for c#. ACM Trans.
Program. Lang. Syst., 26(5):769-804, 2004.

C. Blundell, E. Lewis, and M. Martin. Deconstructing Transactional Semantics: The Subtleties
of Atomicity. Workshop on Duplicating, Deconstructing, and Debunking (WDDD), June, 2005.

C. Boyapati. Safejava: a unified type system for safe programming. PhD thesis, Massachusetts
Institute of Technology, 2004.

B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, and M. D. Corner. Flux: A Language
for Programming High-Performance Servers. In Proceedings of USENIX Annual Technical
Conference, pages 129-142, Boston, MA, May 2006.

61

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

B. D. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. C. Minh, C. Kozyrakis, and K. Olukotun.
The atomos transactional programming language. In PLDI '06: Proceedings of the 2006 ACM

SIGPLAN conference on Programming language design and implementation, pages 1-13, New
York, NY, USA, 2006. ACM Press.

B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel programmability and the chapel
language. International Journal of High Performance Computing Applications, 2007. To appear.
Available online at http://www.highproductivity.org/HPPLM/final-chamberlain.pdf.

B. Chan and T. S. Abdelrahman. Run-time support for the automatic parallelization of java
programs. J. Supercomput., 28(1):91-117, 2004.

P. Charles, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform cluster computing. Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented programming systems languages and
applications, pages 519-538, 2005.

J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape analysis for Java. Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, pages 1-19, 1999.

D. Cunningham. Path inference for atomic sections; first year report. Available online at
http://www.doc.ic.ac.uk/~dc04/1st_year_report.pdf, 2006.

D. Cunningham, S. Drossopoulou, and S. Eisenbach. Universe types for race safety. 2006.

D. Dice, O. Shalev, and N. Shavit. Transactional locking Il. Proc. International Symposium on
Distributed Computing, 2006.

R. Ennals. Software transactional memory should not be obstruction-free. 2006.

K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The Notions of Consistency and Predicate Locks
in a Database System. Commun. ACM, 19(11):624-633, 1976.

Everything2.com. Lock convoying, February 2006. Available online at
http://everything2.com/index.pl?node_id=1786627 (accessed 25-December-2006).

P. Felber and M. Reiter. Advanced concurrency control in java. Concurrency and Computation:
Practice and Experience, 14(4):261-285, 2002.

C. Flanagan and S. Freund. Automatic Synchronization Correction. Synchronization and
Concurrency in Object-Oriented Languages (SCOOL), 2005.

C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multithreaded
programs. SIGPLAN Not., 39(1):256-267, 2004.

C. Flanagan, S. N. Freund, and M. Lifshin. Type inference for atomicity. In TLDI '05: Pro-
ceedings of the 2005 ACM SIGPLAN international workshop on Types in languages design and
implementation, pages 47-58, New York, NY, USA, 2005. ACM Press.

C. Flanagan and S. Qadeer. A type and effect system for atomicity. In PLDI '03: Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design and implementation,
pages 338-349, New York, NY, USA, 2003. ACM Press.

62

http://www.highproductivity.org/HPPLM/final-chamberlain.pdf
http://www.doc.ic.ac.uk/~dc04/1st_year_report.pdf

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

C. Flanagan and S. Qadeer. Types for atomicity. In TLDI '03: Proceedings of the 2003 ACM
SIGPLAN international workshop on Types in languages design and implementation, pages
1-12, New York, NY, USA, 2003. ACM Press.

M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In PODC '04: Proceedings of
the twenty-third annual ACM symposium on Principles of distributed computing, pages 50-59,
New York, NY, USA, 2004. ACM Press.

K. Fraser. Practical lock freedom. PhD thesis, Cambridge University Computer Laboratory,
2003.

K. Fraser and T. Harris. Concurrent Programming without Locks. Submitted for publication,
2004.

S. Freund and S. Qadeer. Checking concise specifications for multithreaded software. In
Workshop on Formal Techniques for Java-like Programs, 2003.

B. Goetz. Synchronization optimizations in mustang. Java theory
and practice (IBM developerWorks), = October 2005. Available online at
http://www-128.1ibm. com/developerworks/java/library/j-jtpl10185/ (accessed
30-12-2006).

J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specification, The (3rd
Edition) (Java Series). Addison-Wesley Professional, July 2005.

J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Granularity of locks and degrees of
consistency in a shared data base. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1998.

A. Greenhouse and J. Boyland. An object-oriented effects system. ECOOP, pages 205-229,
1999.

D. Grossman. Type-safe multithreading in cyclone. In TLDI '03: Proceedings of the 2003 ACM
SIGPLAN international workshop on Types in languages design and implementation, pages
13-25, New York, NY, USA, 2003. ACM Press.

D. Grossman. Software transactions are to concurrency as garbage collection is to memory
management. Technical report, University of Washington, April 2006.

R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust Contention Management in
Software Transactional Memory. In Proceedings of the OOPSLA 2005 Workshop on Synchro-
nization and Concurrency in Object-Oriented Languages (SCOOL'05), 2005.

T. Harris. Design choices for language-based transactions. University of Cambridge Computer
Laboratory Tech. Rep., Aug, 2003.

T. Harris. Exceptions and side-effects in atomic blocks. Science of Computer Programming,
58(3):325-343, 2005.

T. Harris and K. Fraser. Language support for lightweight transactions. ACM SIGPLAN Notices,
38(11):388-402, 2003.

T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions.
Proceedings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 48-60, 2005.

63

http://www-128.ibm.com/developerworks/java/library/j-jtp10185/

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions. Proceedings
of the 2006 ACM SIGPLAN conference on Programming language design and implementation,
pages 14-25, 2006.

J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity specifications for concurrent object-
oriented software using model-checking. In VMCAI, pages 175-190, 2004.

D. Hendler, N. Shavit, and L. Yerushalmi. A scalable lock-free stack algorithm. In SPAA
'04: Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms and
architectures, pages 206215, New York, NY, USA, 2004. ACM Press.

M. Herlihy. Sxml1.1: Software transactional memory package for c#. Available online at
http://www.cs.brown.edu/~mph/, June 2005.

M. Herlihy, J. Eliot, and B. Moss. Transactional Memory: Architectural Support For Lock-free
Data Structures. Computer Architecture, 1993. Proceedings of the 20th Annual International
Symposium on, pages 289-300, 1993.

M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: double-ended queues
as an example. Distributed Computing Systems, 2003. Proceedings. 23rd International Confer-
ence on, pages 522-529, 2003.

M. Herlihy, V. Luchangco, and M. Moir. A flexible framework for implementing software
transactional memory. Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming languages, systems, and applications, pages 253-262, 2006. Library can
be downloaded from http://www.sun.com/download/products.xml?id=453fb28e.

M. Herlihy, V. Luchangco, M. Moir, and W. Scherer IIl. Software transactional memory for
dynamic-sized data structures. Proceedings of the twenty-second annual symposium on Prin-
ciples of distributed computing, pages 92-101, 2003.

M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for atomic sections. In Proceedings
of the First ACM SIGPLAN Workshop on Languages Compilers, and Hardware Support for
Transactional Computing (TRANSACT), June 2006.

B. Hindman and D. Grossman. Strong Atomicity for Java Without Virtual-Machine Support.
2006.

B. Hindman and D. Grossman. Atomicity via source-to-source translation. Proceedings of the
2006 workshop on Memory system performance and correctness, pages 82-91, 2006.

M. Hoskins. A java framework for building data-intensive applications. White paper, Pervasive
Software, 2006.

D. Hovemeyer and W. Pugh. Finding concurrency bugs in java, 2004.

M. Jones. What really happened on mars rover pathfinder. ACM Forum on Risks to the
Public in Computers and Related Systems, 19(49), December 1997. Available online at
http://catless.ncl.ac.uk/Risks/19.49.html#subjl.

D. Kalinsky and M. Barr. Priority inversion. Embedded Sys-
tems Programming, pages 55-56, April 2002. Available online at
http://netrino.com/Publications/Glossary/PriorityInversion.html.

64

http://www.cs.brown.edu/~mph/
http://www.sun.com/download/products.xml?id=453fb28e
http://catless.ncl.ac.uk/Risks/19.49.html#subj1
http://netrino.com/Publications/Glossary/PriorityInversion.html

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

S. Kumar, M. Chu, C. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional memory.
Proceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 209-220, 2006.

D. Lea. The java.util.concurrent synchronizer framework. Sci. Comput. Program., 58(3):293—
309, 2005.

E. A. Lee. The problem with threads. IEEE Computer, 39(5):33-42, 2006.

S. Lee and R. Liou. A Multi-Granularity Locking Model for Concurrency Control in Object-
Oriented Database Systems. IEEE Transactions on Knowledge and Data Engineering, 8(1):144—
156, 1996.

N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents. Computer,
26(7):18-41, 1993.

R. J. Lipton. Reduction: a method of proving properties of parallel programs. Commun. ACM,
18(12):717-721, 1975.

D. Lomet. Process structuring, synchronization, and recovery using atomic actions. ACM
SIGOPS Operating Systems Review, 11(2):128-137, 1977.

V. Marathe, W. Scherer, and M. Scott. Design tradeoffs in modern software transactional
memory systems. Proceedings of the 7th workshop on Workshop on languages, compilers, and
run-time support for scalable systems, pages 1-7, 2004.

J. McCarthy. Recursive functions of symbolic expressions and their computation by machine.
CACM, 3:184-195, 1960.

B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: synchronization inference for
atomic sections. ACM SIGPLAN Notices, 41(1):346-358, 2006.

M. Moir. Transparent Support for Wait-Free Transactions. Proceedings of the 11th International
Workshop on Distributed Algorithms, pages 305-319, 1997.

K. Moore, M. Hill, and D. Wood. Thread-level transactional memory. TR1524, Comp. Science
Dept. UW Madison, March, 31, 2005.

J. Moss. Open Nested Transactions: Semantics and Support. Workshop on Memory Perfor-
mance Issues, 2006.

J. Moss and A. Hosking. Nested Transactional Memory: Model and Preliminary Architecture
Sketches. Proceedings, Workshop on Synchronization and Concurrency in Object-Oriented
Languages, October 2005.

R. H. B. Netzer and B. P. Miller. What are race conditions?: Some issues and formalizations.
ACM Lett. Program. Lang. Syst., 1(1):74-88, 1992.

B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads programming. O'Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1996.

J. K. Ousterhout. Why threads are a bad idea (for most purposes). Presentation given at the
1996 Usenix Annual Technical Conference, January 1996.

K. Poulsen. Tracking the blackout bug. Security Focus, April 2004. Available online at
http://www.securityfocus.com/news/8412.

65

http://www.securityfocus.com/news/8412

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

R. Rajwar and J. Goodman. Speculative lock elision: Enabling highly concurrent multithreaded
execution. Proceedings of the 34th annual ACM/IEEE international symposium on Microarchi-
tecture, December, pages 01-05, 2001.

R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional memory. Proceedings of the 32nd
International Symposium on Computer Architecture, pages 494-505, 2005.

R. Ramakrishnan and J. Gehrke. Database management systems. McGraw-Hill Boston, 2003.

R. M. Ramanathan. Intel multi-core processors: Making the move to
quad-core and beyond. White paper, Intel, 2006. Available online at
http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf.

M. F. Ringenburg and D. Grossman. AtomCaml: first-class atomicity via rollback. Proceedings
of the tenth ACM SIGPLAN international conference on Functional programming, pages 92—
104, 2005.

B. Saha, A. Adl-Tabatabai, R. Hudson, C. Minh, and B. Hertzberg. McRT-STM: a high
performance software transactional memory system for a multi-core runtime. Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 187-197, 2006.

W. Scherer Ill and M. Scott. Advanced contention management for dynamic software trans-
actional memory. Proceedings of the twenty-fourth annual ACM SIGACT-SIGOPS symposium
on Principles of distributed computing, pages 240-248, 2005.

M. Scott. Language support for loosely coupled distributed programs. IEEE Transactions on
Software Engineering, 13(1):88-103, 1987.

N. Shavit and D. Touitou. Software transactional memory. Proceedings of the fourteenth
annual ACM symposium on Principles of distributed computing, pages 204-213, 1995.

H. Sutter. The free lunch is over: A fundamental turn toward concur-
rency in software. Dr. Dobb’s Journal, March 2005. Available online at
http://www.gotw.ca/publications/concurrency-ddj.htm

H. Sutter and J. Larus. Software and the concurrency revolution. ACM Queue, 3(7):54-62,
2005.

C. Szydlowski. Multithreaded technology and multicore processors. Dr. Dobb’s Journal, May
2005. Available online at http://www.ddj.com/dept/architect/184406074.

M. Voss, editor. OpenMP Shared Memory Parallel Programming, International Workshop
on OpenMP Applications and Tools, WOMPAT 2003, Toronto, Canada, June 26-27, 2003,
Proceedings, volume 2716 of Lecture Notes in Computer Science. Springer, 2003.

L. Wang and S. D. Stoller. Runtime analysis of atomicity for multithreaded programs. [EEE
Trans. Softw. Eng., 32(2):93-110, 2006.

A. Welc, A. Hosking, and S. Jagannathan. Transparently Reconciling Transactions with Locking
for Java Synchronization. European Conference on Object-Oriented Programming, 2006.

Wikipedia. Lock convoy, December 2006. Available online at
http://en.wikipedia.org/wiki/Lock_convoy (accessed 25-December-2006).

66

http://www.intel.com/technology/architecture/downloads/quad-core-06.pdf
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.ddj.com/dept/architect/184406074

[94] Wikipedia. Manual memory management, December 2006. Available online at
http://en.wikipedia.org/wiki/Manual_-memory_management (accessed 24-December-2006).

[95] Wikipedia. Red-black tree, January 2007. Available online at http://en.wikipedia.org/wiki/Red-
Black_tree (accessed 14-January-2007).

67

Appendix A

Singlestep toy language grammar

A.1 Declarations

program
classdecl
maindecl
methoddecl
constructordecl
paramslist
param
vardecllist
instvardecl
vardecl

type

(classdecl)* maindecl EOF

CLASS IDENT LBRACE (methoddecl | instvardecl SEMI)* RBRACE
MAIN statlist

constructordecl | type IDENT LPAREN (paramslist)? RPAREN statlist
IDENT LPAREN (paramslist)7 RPAREN statlist

param (COMMA param)*

type IDENT

vardecl (COMMA vardec|)*

type IDENT

type IDENT (ASSIGN expr)?

INT | BOOL | STR | IDENT | VOID

L bbbl

A.2 Statements

statlist
stat

L

ifstat
whilestat
atomicstat
returnstat
spawnstat
lockstat

Ll bl

joinstat
skipstat
printstat

l

L

LBRACE (stat)? RBRACE

expr SEMI | vardecl SEMI | statlist | ifstat | whilestat | atomicstat | returnstat
| spawnstat | printstat | lockstat | joinstat | skipstat

IF LPAREN expr RPAREN stat ELSE stat

WHILE LPAREN expr RPAREN stat

ATOMIC stat

RETURN (expr)? SEMI

SPAWN (vardecllist)? statlist

(LOCKR | LOCKRW | UNLOCKR | UNLOCKRW | UNLOCK)
LPAREN path RPAREN SEMI

JOIN SEMI

SKIP SEMI

PRINT (expr | STRING) SEMI

A.3 Expressions

exprlist — expr (COMMA expr)*
expr — assignexpr

68

assignexpr — path ASSIGN assignexpr | orexpr
orexpr — andexpr (OR andexpr)*
andexpr — equalexpr (AND equalexpr)*
equalexpr — relexpr ((EQ | NEQ) relexpr)*
relexpr — addexpr ((LT | LTE | GT | GTE) addexpr)?
addexpr — mulexpr ((PLUS | MINUS) mulexpr)*
mulexpr — unaryexpr ((TIMES | DIV | MOD) unaryexpr)*
unaryexpr — (INC | DEC | PLUS | MINUS) unaryexp
| NOT postfixexpr | postfixexpr
postfixexpr — primaryexpr (INC | DEC)?

primaryexpr — pathormethod | newexpr | TRUE | FALSE | NULL | THIS | STRING
| INTEGER | LPAREN expr RPAREN
pathormethod path (LPAREN (exprlist)7 RPAREN)?
path — IDENT (DOT IDENT)*

l

newexpr — NEW IDENT LPAREN (exprlist)? RPAREN
A.4 Tokens
CLASS — ‘“class” OR — 1"
MAIN — “main” AND — “&&"
IF — *“if EQ — =="
ELSE — ‘“else” NEQ — “1="
WHILE — ‘“while” LT — ‘<
ATOMIC — ‘“atomic” LTE — ‘“<="
RETURN — ‘“return”’ GT — >’
SPAWN — ‘“spawn” GTE — "“>="
LOCKR — ‘“lockr” PLUS — '+
LOCKRW — “lockrw” MINUS —
UNLOCKR — “unlockr’ TIMES — ‘¥
UNLOCKRW — “unlockrw” Div. — '/
UNLOCK — ‘“unlock” MOD — ‘%’
JOIN — “join” INC — "“"++47
SKIP — “skip” DEC — “ .
PRINT — “print” NOT — ‘I
NEW — ‘“new” TRUE — “true’
FALSE — “false”
LBRACE — { NULL — “null”
RBRACE — '} THIS — ‘“this"
LPAREN — (INT — “int"
RPAREN — ') BOOL — “bool”
IDENT — (a’-‘z")(a'-'z2‘A’-'Z"'0" - '9")* STR — ‘“string”
INTEGER — ‘0'-'9 VOID — ‘void”
STRING — \"(IDENT)*\"
COMMA —
DOT — '
ASSIGN — ‘=
SEMI —

69

	Introduction
	The subtleties of concurrent programming
	Preventing race conditions
	The complexities of using locks

	The quest for better abstractions
	Race-freedom as a non-interference property
	Enter the world of atomicity
	Verifying atomicity
	Type Systems
	Theorem Proving and Model Checking
	Dynamic Analysis

	Atomicity: an abstraction?
	Atomic sections
	The garbage collection analogy
	A similar approach for concurrency
	Popularity
	Implementing their semantics

	Report structure

	Background
	Terminology
	Strong vs. weak atomicity
	Closed nested vs. open nested transactions

	Transactional memory
	Hardware transactional memory (HTM)
	Conclusion

	Software transactional memory (STM)
	Word-based vs. Object-based STMs
	Non-blocking STMs
	Omitting the non-blocking requirement
	Conclusion

	Lock inferencing
	Mapping data to locks
	Read/write locks
	Multi-granularity locking

	Acquiring/releasing locks
	Which locks to acquire
	Acquisition order

	Minimising the number of locks
	Thread shared vs. thread local
	Conflating locks
	Constant paths
	Inside atomic sections vs. outside atomic sections

	Starvation
	Nested atomic sections
	Source code availability
	Conclusion

	Hybrids
	Conclusion

	Specification
	Language
	Analysis
	Runtime
	Testing
	Additional tests
	Language behaviour
	Runtime behaviour

	Documentation

	Evaluation
	Verifying correctness
	Language features
	Performance
	Benchmarks
	Metrics

	Bibliography
	Singlestep toy language grammar
	Declarations
	Statements
	Expressions
	Tokens

