
Lock Inference for Java

Khilan Gudka
Imperial College London

Supervised by
Professor Susan Eisenbach, Imperial College London

Professor Sophia Drossopoulou, Imperial College London

This work was generously funded by Microsoft Research Cambridge
1



Concurrency control
Status quo: we use locks

• But there are problems with them
– Not composable
– Break modularity
– Deadlock
– Priority inversion
– Convoying
– Starvation
– Hard to change granularity (and maintain in general)

• We want to eliminate the lock abstraction but is 
there a better alternative?

2



Atomic sections
• What programmers probably can do is tell 

which parts of their program should not 
involve interferences

• Atomic sections
– Declarative concurrency control
– Move responsibility for figuring out what to do to 

the compiler/runtime
atomic {

x.f++;
y.f++;

}
3



Atomic sections

• Simple semantics (no interference allowed)
• Naïve implementation: one global lock
• But we still want to allow parallelism without:
– Interference
– Deadlock

• Optimistic vs. Pessimistic implementations

4



Implementing Atomic Sections:
Optimistic = transactional memory

• Advantages
– None of the problems associated with locks
– More concurrency

• Disadvantages
– Irreversible operations (IO, System calls)
– Runtime overhead

• Much interest

5



Implementing Atomic Sections:
Pessimistic = lock inference

• Statically infer and instrument the locks that 
are needed to protect shared accesses

• Acquire locks in two-phased order for atomicity
• Can handle irreversible operations!

atomic {
x.f++;
y.f++;

}

lock(x);
lock(y);

x.f++;
y.f++;

unlock(y);
unlock(x);

compiled to

6



Motivation:
A “Simple” I/O Example

atomic {
System.out.println(“Hello World!”);

}

7



Motivation:
A “Simple” I/O Example

8

• Callgraph:



Motivation:
A “Simple” I/O Example

• Cannot find in the literature any lock inference analysis 
which can handle this!
– Ignore it due to the imprecision and resulting performance

• General goals/challenges of lock inference
– Maximise concurrency
– Minimise locking overhead
– Avoid deadlock

• Achieve all of the above in the presence of libraries. 
Challenges that libraries introduce:
– Scalability (many and long call chains)
– Imprecision (have to consider all library execution paths)

9

} Prior
work

} This
work



Thesis

We argue:
“It is possible to develop lock inference
techniques that scale to real-world Java
programs that make use of the library and still
obtain performance comparable to hand-crafted
locking.”

10



Our lock inference analysis:
Infer fine-grained locks

• Infer path expressions at each program point:

x = y

x.f = 10

Obj x = …;
Obj y = …;
atomic {

x = y;
x.f++;

}

{}

{ x }

{ y }
Obj x = …;
Obj y = …;
lock(y);

x = y;
x.f++;

unlock(y);

11



Scaling by computing summaries

m(a)

{}

fm({}) = { a }

void m(Obj p) {
p.f = 1;

}

fm is m’s summary function

Summaries can get large: challenge is to find a
representation of transfer functions that allows fast
composition and meet operations

12



Implementation

Name #Threads #Atomics #client 
methods

#lib
methods

LOC (client)

sync 8 2 0 0 1177

pcmab 50 2 2 15 457

bank 8 8 6 7 269

traffic 2 24 4 63 2128

mtrt 2 6 67 1324 11312

hsqldb 20 240 2107 2955 301971

• We implemented our approach in the SOOT 
framework

• Evaluated using standard benchmarks for atomicity 
(that do not perform system calls).

13



Analysis times

Name Paths Locks Total

sync 0.122s 0.14s 5m 31s
pcmab 0.246s 0.092s 5m 15s
bank 0.247s 0.129s 5m 27s
traffic 1.695s 0.2s 5m 40s
mtrt 1h 30m 8.579s 1h 36m

hsqldb ? ? ?
14

• Experimental machine:
256-core Xeon E7-8837 2.67Ghz, 3TB RAM, SUSE Linux 
Enterprise Server, Oracle Java 6

• Java options:
Min & Max heap: 70GB, Stack: 128MB



Simple analysis not enough
• Our analysis still wasn’t efficient enough to analyse hsqldb.
• We performed further optimisations to reduce space-time:

– Primitives for state
Encode analysis state as sets of longs for efficiency. All subsequent optimisations
assume this

– Parallel propagation
• Perform intra-procedural propagation in parallel for different methods
• Perform inter-procedural propagation in parallel for different call-sites

– Summarising CFGs 
• Merging CFG nodes to reduce the amount of storage space and propagation

– Worklist Ordering
• Ordering the worklist so that successor nodes are processed before 

predecessor nodes. This helps reduce redundant propagation
– Deltas

• Only propagate new dataflow information
• Reduces the amount of redundant work

15



Analysis times
• Experimental machine for hsqldb:

256-core Xeon E7-8837 2.67Ghz, 3TB RAM, SUSE Linux 
Enterprise Server, Oracle Java 6

• Java options:
Min & Max heap: 70GB, Stack: 128MB, 8 threads

16

Name Paths Locks Total

sync 0.122s 0.14s 5m 31s
pcmab 0.246s 0.092s 5m 15s
bank 0.247s 0.129s 5m 27s
traffic 1.695s 0.2s 5m 40s
mtrt 1h 30m 8.579s 1h 36m

hsqldb 6h 6m 22m 6h 38m



What about runtime performance?

Benchmark Manual Global Us Us vs
Manual

sync 69.14s 71.22 74.61s 1.08x
pcmab 2.28s 3.15 12.47s 5.47x
bank 20.89s 19.50 30.88s 1.47x
traffic 2.56s 4.22 91.42s 35.71x
mtrt 0.80s 0.82 0.95s 1.19x

hsqldb 3.25s 3.12 500s 153.85x

17

• Experimental machine (a modern desktop):
8-core i7 3.4Ghz, 8GB RAM, Ubuntu 11.04, Jikes RVM



Improve run-time performance:
Avoid unnecessary locking

• We avoid unnecessary locking to improve the 
performance of the resulting instrumented 
programs.

18

Lock optimisation Type of analysis Runtime slowdown vs. 
manual locking

Single-threaded lock elision Dynamic 1.10x – 16.13x

Thread-local Static 1.09x – 14.84x

Instance-local Static 1.13x – 13.16x

Class-local Static 1.14x – 15.32x

Method-local Static 1.14x – 15.05x

Dominated Static 1.14x – 15.47x

Read-only Static 1.14x – 13.26x



Removing locks: All optimisations

19

Benchmark Manual Global Us 
(no opt.)

Us 
(all opt.)

Us vs
Manual

Us vs
Global

sync 69.14s 71.22s 74.61s 56.61s 0.82x 0.79x
pcmab 2.28s 3.15s 12.47s 2.47s 1.08x 0.78x
bank 20.89s 19.50s 30.88s 3.88s 0.19x 0.20x
traffic 2.56s 4.22s 91.42s 4.42s 1.73x 1.05x
mtrt 0.80s 0.82s 0.95s 0.85s 1.06x 1.04x

hsqldb 3.25s 3.12s 500s 11.39s 3.50x 3.65x



Achievements

• We present a scalable set of analyses and 
optimisations that are able to fully analyse
library code in reasonable space and time

• Ours is thus the first sound approach
• With a large number of optimisations, we 

manage to get worst-case execution times of 
only 3.50x and <2x in the general case vs
perfect and well-tested manual locking

• We also achieve some speed ups

20


