Lock Inference in the
Presence of Large Libraries

Khilan Gudka, Imperial College London*
Tim Harris, Microsoft Research Cambridge
Susan Eisenbach, Imperial College London

ECOOP 2012

This work was generously funded by Microsoft Research Cambridge
* Now at University of Cambridge Computer Laboratory

Concurrency control
Status quo: we use locks

* But there are problems with them
— Not composable
— Break modularity
— Deadlock
— Priority inversion
— Convoying
— Starvation
— Hard to change granularity (and maintain in general)

e We want to eliminate the lock abstraction but is
there a better alternative?

Atomic sections

* What programmers probably can do is tell
which parts of their program should not
involve interferences

* Atomic sections
— Declarative concurrency control

— Move responsibility for figuring out what to do to
the compiler/runtime

atomic {
X.f++;
y.f++;

}

Atomic sections

Simple semantics (no interference allowed)
Naive implementation: one global lock

But we still want to allow parallelism without:
— Interference

— Deadlock

Optimistic vs. Pessimistic implementations

Implementing Atomic Sections:
Optimistic = transactional memory

* Advantages
— None of the problems associated with locks
— More concurrency

* Disadvantages

— Irreversible operations (10, System calls)
— Runtime overhead

* Much interest

Implementing Atomic Sections:
Pessimistic = lock inference

e Statically infer and instrument the locks that
are needed to protect shared accesses

lock(x);
atomic { lock (V);
X.f++; compiled to X.E++;
y.£++; g y.f++;
} unlock(y);

unlock(x);

* Acquire locks in two-phased order for atomicity
* Can handle irreversible operations!

Motivation:
A “Simple” 1/0 Example

atomic {
System.out.println(“Hello World!”);

}

* Callgraph:

Motivation:
“Simple” I/O Example

Motivation:
A “Simple” 1/0 Example

Cannot find in the literature any lock inference analysis
which can handle this!

General goals/challenges of lock inference
— Maximise concurrency

— Minimise locking overhead

— Avoid deadlock

Achieve all of the above in the presence of libraries.
Challenges that libraries introduce:

— Scalability (many and long call chains)
— Imprecision (have to consider all library execution paths)

Our lock inference analysis:
Infer fine-grained locks

* Infer path expressions at each program point:

Obj x
Obj vy

atomic {

}

X =Yy
X.E++;

[]
(X X] ’

[]
LLLNY 4

{y}

{X}

l i

Obj x e}
Obj vy .-
lock(y);
X =Y
X.E++;
unlock(y);

10

Scaling by computing summaries

l fu(l}) =1a}

volid m(Obj p) {
p.f = 1;

}
i

f is m’s summary function

Summaries can get large: challenge is to find a
representation of transfer functions that allows fast
composition and meet operations

IDE Analyses

 Use Sagiv et al’s Interprocedural Distributive
Environment framework

* Advantage: efficient graph representation
of transfer functions that allows fast
composition and meet

{y,z}=0UT - Xy
Kill(IN) = { x } i
Gen(IN)={y | xinIN }
OUT = IN\Kll(IN) U Gen(IN) &en
1 X Y Z

{x,z}=IN

12

Transfer functions as graphs

Graphs are kept sparse by not explicitly
representing trivial edges

{y,Z} 1

|
|
L/l
|
I

S

< -m——m -3

Z
A
I
I
I
I
I
I
Z

{x,z2}

Transformer composition is simply transitive
closure

13

Transfer functions as graphs

Implicit edges should not have to be made explicit as
that would be expensive

For our analysis, most transformer functions perform
rewrites, thus determining whether an implicit edge

exists is costly using Sagiv et al’s graphs

Transfer functions as graphs
(Ours)

* We represent kills in transformers as:

X —mmm> J

* Transformer edges also implicitly kill:

X —> Y

Result: implicit edge very easy to
determine. This leads to fast transitive
closure

Transfer functions as graphs
(Ours)

e Example:

{y,z} 1 2 X y

16

Implementation

* We implemented our approach in the SOOT
framework

* Evaluated using standard benchmarks for atomicity
(that do not perform system calls).

#Threads #client #lib LOC (client)
methods methods

sync 1177

pcmab 50 2 2 15 457
bank 8 8 6 7 269

traffic 2 24 4 63 2128
mtrt 2 6 67 1324 11312

hsqgldb 20 240 2107 2955 301971

17

Analysis times

* Experimental machine (a modern desktop):

8-core i7 3.4Ghz, 8GB RAM, Ubuntu 11.04, Oracle Java 6
* Java options:

Min & Max heap: 8GB, Stack: 128MB

__ Name | Paths | _locks | Total __

sync 0.05s 0.01s 2m7s
pcmab 0.15s 0.02s 2m 7s
bank 0.15s 0.02s 2m 7s
traffic 0.37s 0.06s 2m 10s
mtrt 33.9s 1.89s 2m 49s

hsqgldb ? ? ?

18

Simple analysis not enough

Our analysis still wasn’t efficient enough to analyse hsqgldb.
We performed further optimisations to reduce space-time:

— Primitives for state

Encode analysis state as sets of longs for efficiency. All subsequent optimisations
assume this

— Parallel propagation
* Perform intra-procedural propagation in parallel for different methods
e Perform inter-procedural propagation in parallel for different call-sites
— Summarising CFGs
* Merging CFG nodes to reduce the amount of storage space and propagation

— Worklist Ordering

* Ordering the worklist so that successor nodes are processed before
predecessor nodes. This helps reduce redundant propagation

— Deltas
* Only propagate new dataflow information
* Reduces the amount of redundant work

Evaluation of analysis optimisations:

Analysis running time

* On the Hello World program...

Running time (minutes)

17

16 |
15 |
14 |
13 |
12 |
11 |
10 |

O - NWPHAO1ILO N OO
S e L A R p—

1

2

3

None

Summarise CFGs

Worklist Ordering
Deltas

4 5 6 7
Number of threads

8

20

Evaluation of analysis optimisations:
Analysis memory usage

* On the Hello World program...

None 4923.92 8183.18
Summarise CFGs 2094.68 3470.65
Worklist Ordering 4804.73 8037.14
Deltas 3848.98 6538.27

All 1741.39 3122.84

Analysis times

* Experimental machine for hsgldb:

256-core Xeon E7-8837 2.67Ghz, 3TB RAM, SUSE Linux
Enterprise Server, Oracle Java 6

* Java options:
Min & Max heap: 70GB, Stack: 128MB, 8 threads

__ Name | Paths | __locks | Total ___

sync 0.05s 0.01s 2m7s
pcmab 0.15s 0.02s 2m 7s
bank 0.15s 0.02s 2m 7s
traffic 0.37s 0.06s 2m 10s
mtrt 33.9s 1.89s 2m 49s

hsqgldb 6h 6m 22m 6h 38m

22

What about deadlock?

Lock inference inserts locks automatically, so
it must ensure that deadlock doesn’t happen

Static analysis is too conservative
Deadlock happens very infrequently

All locks are taken at the start of the atomic,
so can just rollback the locks if deadlock
occurs and try again!

What about runtime performance?

sync 69.14s 71.22 81.59s 1.18x
pcmab 2.28s 3.15 54.61s 23.95x

bank 20.89s 19.50 76.88s 3.68x
traffic 2.56s 4.22 20.77s 8.11x

mtrt 0.80s 0.82 0.91s 1.14x

hsgldb 3.25s 3.12 419s 129.03x

24

Improve run-time performance:
Avoid unnecessary locking

 We avoid unnecessary locking to improve the
performance of the resulting instrumented
programs.

Lock optimisation Type of analysis | Runtime slowdown vs.
manual locking

Single-threaded lock elision Dynamic 1.10x — 16.13x
Thread-local Static 1.09x — 14.84x
Instance-local Static 1.13x —13.16x

Class-local Static 1.14x —15.32x
Method-local Static 1.14x — 15.05x
Dominated Static 1.14x —15.47x

Read-only Static 1.14x — 13.26x

Removing locks: All optimisations

L mmmmmm

sync 69.14s 71.22s 81.59s 56.61s 0.82x 0.79x
pcmab 2.28s 3.15s 54.61s 2.47s 1.08x 0.78x
bank 20.89s 19.50s 76.88s 3.88s 0.19x 0.20x
traffic 2.56s 4.22s 20.77s 4.42s 1.73x 1.05x
mtrt 0.80s 0.82s 0.91s 0.85s 1.06x 1.04x

hsqldb 3.25s 3.12s 419s 11.39s 3.50x 3.65x

26

What about Hello World?

e Concurrent Hello World benchmark with 8
threads.

* Each thread prints “Hello World! from thread
X" 1000 times

* Analysis results

No. of locks (no lock opts) No. of locks (all lock opts)

2m 30s 495 25

 Runtime performance

0.32s 0.27s 2.21s

27

Conclusion

Existing lock inference approaches are unsound
because they do not analyse library code

— i.e. due to scalability, imprecision, etc.
Our approach does, thus correct by construction

With an enormous number of optimisations, we

manage to get worst-case execution time of only
3.50x and <2x in general case vs perfect and well-
tested manual locking as well as some speed-ups!

So, programmers get the simplicity of atomic
sections with almost the speed of manual locks

Questions?

“Out of this nettle, danger, we pluck this flower,
sdafety”
William Shakespeare

If he was a programmer today...

“Out of this nettle, concurrency, we pluck this
flower, atomicity”

29

